Refine
Year of publication
Document Type
- Article (12)
- Doctoral Thesis (1)
Has Fulltext
- yes (13)
Is part of the Bibliography
- no (13)
Keywords
- colorectal cancer (3)
- Cytoskeletal proteins (2)
- DNA mismatch repair (2)
- MLH1 (2)
- SPTAN1 (2)
- Biochemistry (1)
- CK2α (1)
- Caco-2 cells (1)
- Cell motility (1)
- Cellular (1)
Die Mismatch-Reparatur (MMR) ist ein hochkonserviertes Kontroll- und Korrektursystem für die Erbinformation. Ihre Hauptaufgabe liegt in der Behebung von Kopierfehlern unmittelbar nach der Replikation (postreplikative Reparatur). Mutationen in Genen der Mismatch-Reparatur (vor allem in hMLH1 und hMSH2) führen beim Menschen zum "Erblichen nicht-polypösen kolorektalen Karzinom", HNPCC (Hereditary non-polyposis colorectal cancer). Diese Erbkrankheit geht mit einem gesteigerten Risiko einher, an verschiedenen Karzinomen, vor allem des Kolons, zu erkranken. Obwohl zumindest in Escherichia coli alle an der Mismatch-Reparatur beteiligten Proteine bekannt sind, ist ihr biochemischer Mechanismus nach wie vor ungeklärt. Es existieren drei verschiedene Modellvorstellungen zum Reparaturablauf: das Translocation model, das Sliding clamp model und das DNA bending model. Um einer Klärung des Reparaturmechanismus näherzukommen, sollten in dieser Arbeit die Bindungen der humanen Mismatch-Reparaturproteine an DNA und ihre Interaktionen untereinander näher untersucht werden. Im Zentrum stand dabei die Interaktion der heterodimeren ATPase hMutSa (hMSH2-hMSH6) mit den ebenfalls heterodimeren ATPasen hMutLa (hMLH1-hPMS2) und hMutLß (hMLH1-hPMS1). Die Hauptfunktion von hMutSa ist bekannt: das Dimer ist in der Lage, DNA-Paarungsfehler zu erkennen und an sie zu binden. Die Funktion von hMutLa liegt wahrscheinlich in der Weiterleitung des Signals "Fehler erkannt" von hMutSa an die Reparaturmaschinerie. Somit kommt der Interaktion von hMutSa mit hMutLa eine wesentliche Bedeutung in der Initiation der Reparatur zu. Die Funktion von hMutLß ist noch unbekannt. Zur Analyse der hMutSa-hMutL-Interaktion wurde eine neue Methodik entwickelt, bei der DNA-Substrate an magnetische Partikel gebunden, diese mit Proteinlösungen inkubiert und die gebundenen Proteine anschließend mit Salzlösungen eluiert wurden. Hierdurch konnten die Bindungsstärken anhand der Salzresistenz differenziert werden und die Bindungsreaktionen nach ATP-Zugabe bei verschiedenen DNA-Substraten verfolgt werden. Es konnte gezeigt werden, daß hMutSa zwar nicht quantitativ mehr, aber fester an DNA-Paarungsfehler band als an fehlerfreie DNA-Oligoduplices. Die Bindung reagierte empfindlich auf die Zugabe von ATP: auf Homoduplex-DNA bewirkte ATP unter geeigneten Bedingungen einen vollständigen Bindungsverlust von hMutSa, während es an Heteroduplex-DNA auch in Gegenwart des Nukleotidtriphosphates gebunden blieb. Eine weitere Wirkung von ATP bestand darin, daß hMutSa hMutLa und hMutLß rekrutierte. Dies geschah allerdings nur, wenn ausreichend lange DNA-Substrate (>= 81 Basenpaare) verwendet wurden. Für hMutLa konnte außerdem eine eigene DNA-Bindungsfähigkeit, und zwar vorzugsweise an Einzelstrang-DNA, nachgewiesen werden. Beide Ergebnisse zusammen genommen legen nahe, daß hMutSa und hMutLa nur interagieren können, wenn beide gleichzeitig an DNA gebunden sind. Obwohl nach bisherigen Erkenntnissen hMutLa, aber nicht hMutLß die Mismatch-Reparatur unterstützen kann, interagierte hMutLß ebensogut mit hMutSa. Dies läßt im Zusammenhang mit weiteren Ergebnissen vermuten, daß hMutLß eine modulierende Funktion in der MMR besitzen könnte. Alternativ könnte die hMutSa-hMutLß-Interaktion bei noch nicht charakterisierten anderen Prozessen von Bedeutung sein. Die weitere Untersuchung der Interaktion ergab, daß diese wahrscheinlich nicht von der ATP-Hydrolyse abhängt, sondern allein durch die Bindung des Nukleotidtriphosphates zustande kommt. Darüber hinaus spielen die ATPasen von hMutLa keine Rolle bei der Interaktion, da das Protein auch dann noch die Bindung einging, wenn seine Nukleotidbindungsstellen gezielt mutiert worden waren. Die Untersuchung zeigte außerdem, daß nur die hMutL-Untereinheiten hMLH1 und (in geringem Ausmaß) hPMS1 ATP-abhängig mit hMutSa interagierten, während hPMS2 alleine keine Bindung zeigte. Die sich daran anschließende Untersuchung von Fragmenten des hMLH1-Proteins erlaubte die Eingrenzung der Interaktionszone. hMutLa kontaktiert hMutSa demzufolge mit einem Proteinbereich, der innerhalb des N-Terminus von hMLH1 liegt. Zusammenfassend wird aufgrund der vorliegenden Ergebnisse für das DNA bending model der Mismatch-Reparatur plädiert. Dessen Reparaturablauf wird abschließend unter Berücksichtigung der vorliegenden Daten geschildert. In einem separaten Kapitel der Arbeit wird über die Identifizierung und Charakterisierung einer neuen Spleißmutation des humanen PTEN-Gens berichtet. Diese Mutation wurde bei einer Patientin mit dem Cowden-Syndrom, einem weiteren erblichen Krebssyndrom, nachgewiesen.
The human DNA mismatch repair (MMR) process is crucial to maintain the integrity of the genome and requires many different proteins which interact perfectly and coordinated. Germline mutations in MMR genes are responsible for the development of the hereditary form of colorectal cancer called Lynch syndrome. Various mutations mainly in two MMR proteins, MLH1 and MSH2, have been identified so far, whereas 55% are detected within MLH1, the essential component of the heterodimer MutLα (MLH1 and PMS2). Most of those MLH1 variants are pathogenic but the relevance of missense mutations often remains unclear. Many different recombinant systems are applied to filter out disease-associated proteins whereby fluorescent tagged proteins are frequently used. However, dye labeling might have deleterious effects on MutLα's functionality. Therefore, we analyzed the consequences of N- and C-terminal fluorescent labeling on expression level, cellular localization and MMR activity of MutLα. Besides significant influence of GFP- or Red-fusion on protein expression we detected incorrect shuttling of single expressed C-terminal GFP-tagged PMS2 into the nucleus and found that C-terminal dye labeling impaired MMR function of MutLα. In contrast, N-terminal tagged MutLαs retained correct functionality and can be recommended both for the analysis of cellular localization and MMR efficiency.
Introduction: Defects in the DNA mismatch repair (MMR) protein MLH1 are frequently observed in sporadic and hereditary colorectal cancers (CRC). Affected tumors generate much less metastatic potential than the MLH1 proficient forms. Although MLH1 has been shown to be not only involved in postreplicative MMR but also in several MMR independent processes like cytoskeletal organization, the connection between MLH1 and metastasis remains unclear. We recently identified non-erythroid spectrin αII (SPTAN1), a scaffolding protein involved in cell adhesion and motility, to interact with MLH1. In the current study, the interaction of MLH1 and SPTAN1 and its potential consequences for CRC metastasis was evaluated.
Methods: Nine cancer cell lines as well as fresh and paraffin embedded colon cancer tissue from 12 patients were used in gene expression studies of SPTAN1 and MLH1. Co-expression of SPTAN1 and MLH1 was analyzed by siRNA knock down of MLH1 in HeLa, HEK293, MLH1 positive HCT116, SW480 and LoVo cells. Effects on cellular motility were determined in MLH1 deficient HCT116 and MLH1 deficient HEK293T compared to their MLH1 proficient sister cells, respectively.
Results: MLH1 deficiency is clearly associated with SPTAN1 reduction. Moreover, siRNA knock down of MLH1 decreased the mRNA level of SPTAN1 in HeLa, HEK293 as well as in MLH1 positive HCT116 cells, which indicates a co-expression of SPTAN1 by MLH1. In addition, cellular motility of MLH1 deficient HCT116 and MLH1 deficient HEK293T cells was impaired compared to the MLH1 proficient sister clones. Consequently, overexpression of SPTAN1 increased migration of MLH1 deficient cells while knock down of SPTAN1 decreased cellular mobility of MLH1 proficient cells, indicating SPTAN1-dependent migration ability.
Conclusions: These data suggest that SPTAN1 levels decreased in concordance with MLH1 reduction and impaired cellular mobility in MLH1 deficient colon cancer cells. Therefore, aggressiveness of MLH1-positive CRC might be related to SPTAN1.
Three AKT serine/threonine kinase isoforms (AKT1/AKT2/AKT3) mediate proliferation, metabolism, differentiation and anti-apoptotic signals. AKT isoforms are activated down- stream of PI3-kinase and also by PI3-kinase independent mechanisms. Mutations in the lipid phosphatase PTEN and PI3-kinase that increase PIP3 levels increase AKT signaling in a large proportion of human cancers. AKT and other AGC kinases possess a regulatory mechanism that relies on a conserved hydrophobic motif (HM) C-terminal to the catalytic core. In AKT, the HM is contiguous to the serine 473 and two other newly discovered (serine 477 and tyrosine 479) regulatory phosphorylation sites. In AKT genes, this regulatory HM region is encoded in the final exon. We identified a splice variant of AKT2 (AKT2-13a), which contains an alternative final exon and lacks the HM regulatory site. We validated the presence of mRNA for this AKT2-13a splice variant in different tissues, and the presence of AKT2-13a protein in extracts from HEK293 cells. When overexpressed in HEK293 cells, AKT2-13a is phosphorylated at the activation loop and at the zipper/turn motif phosphoryla- tion sites but has reduced specific activity. Analysis of the human transcriptome correspond- ing to other AGC kinases revealed that all three AKT isoforms express alternative transcripts lacking the HM regulatory motif, which was not the case for SGK1-3, S6K1-2, and classical, novel and atypical PKC isoforms. The transcripts of splice variants of Akt1-3 excluding the HM regulatory region could lead to expression of deregulated forms of AKT.
MutLα is essential for human DNA mismatch repair (MMR). It harbors a latent endonuclease, is responsible for recruitment of process associated proteins and is relevant for strand discrimination. Recently, we demonstrated that the MMR function of MutLα is regulated by phosphorylation of MLH1 at serine (S) 477. In the current study, we focused on S87 located in the ATPase domain of MLH1 and on S446, S456 and S477 located in its linker region. We analysed the phosphorylation-dependent impact of these amino acids on DNA binding, MMR ability and thermal stability of MutLα. We were able to demonstrate that phosphorylation at S87 of MLH1 inhibits DNA binding of MutLα. In addition, we detected that its MMR function seems to be regulated predominantly via phosphorylation of serines in the linker domain, which are also partially involved in the regulation of DNA binding. Furthermore, we found that the thermal stability of MutLα decreased in relation to its phosphorylation status implying that complete phosphorylation might lead to instability and degradation of MLH1. In summary, we showed here, for the first time, a phosphorylation-dependent regulation of DNA binding of MutLα and hypothesized that this might significantly impact its functional regulation during MMR in vivo.
Tumor recurrence and drug resistance are responsible for poor prognosis in colorectal cancer (CRC). DNA mismatch repair (MMR) deficiency or elevated interleukin-8 (IL-8) levels are characteristics of CRCs, which have been independently correlated with treatment resistance to common therapies. We recently demonstrated significantly impaired therapeutical response and increased IL-8 release of CRC cell lines with reduced expression of MMR protein MLH1 as well as cytoskeletal non-erythrocytic spectrin alpha II (SPTAN1). In the present study, decreased intratumoral MLH1 and SPTAN1 expression in CRCs could be significantly correlated with enhanced serum IL-8. Furthermore, using stably reduced SPTAN1-expressing SW480, SW620 or HT-29 cell lines, the RAS-mediated RAF/MEK/ERK pathway was analyzed. Here, a close connection between low SPTAN1 expression, increased IL-8 secretion, enhanced extracellular-signal-regulated kinase (ERK) phosphorylation and a mesenchymal phenotype were detected. The inhibition of ERK by U0126 led to a significant reduction in IL-8 secretion, and the combination therapy of U0126 with FOLFOX optimizes the response of corresponding cancer cell lines. Therefore, we hypothesize that the combination therapy of FOLFOX and U0126 may have great potential to improve drug efficacy on this subgroup of CRCs, showing decreased MLH1 and SPTAN1 accompanied with high serum IL-8 in affected patients.
DNA mismatch repair (MMR) deficiency plays an essential role in the development of colorectal cancer (CRC). We recently demonstrated in vitro that the serine/threonine casein kinase 2 alpha (CK2α) causes phosphorylation of the MMR protein MLH1 at position serine 477, which significantly inhibits the MMR. In the present study, CK2α-dependent MLH1 phosphorylation was analyzed in vivo. Using a cohort of 165 patients, we identified 88 CRCs showing significantly increased nuclear/cytoplasmic CK2α expression, 28 tumors with high nuclear CK2α expression and 49 cases showing a general low CK2α expression. Patients with high nuclear/cytoplasmic CK2α expression demonstrated significantly reduced 5-year survival outcome. By immunoprecipitation and Western blot analysis, we showed that high nuclear/cytoplasmic CK2α expression significantly correlates with increased MLH1 phosphorylation and enriched somatic tumor mutation rates. The CK2α mRNA levels tended to be enhanced in high nuclear/cytoplasmic and high nuclear CK2α-expressing tumors. Furthermore, we identified various SNPs in the promotor region of CK2α, which might cause differential CK2α expression. In summary, we demonstrated that high nuclear/cytoplasmic CK2α expression in CRCs correlates with enhanced MLH1 phosphorylation in vivo and seems to be causative for increased mutation rates, presumably induced by reduced MMR. These observations could provide important new therapeutic targets.
Epigenetic silencing of tumour suppressor genes has been observed in various cancers. Looking at hepatocellular carcinoma (HCC) specific protein silencing was previously demonstrated to be associated with the Hepatitis C virus (HCV). However, the proposed HCV dependent promoter methylation of DNA mismatch repair (MMR) genes and thereby enhanced progression of hepatocarcinogenesis has been the subject of controversial discussion. We investigated promoter methylation pattern of the MMR genes MLH1, MSH2 and PMS2 as well as the cyclin-dependent kinase inhibitor 2A gene (p16) in 61 well characterized patients with HCCs associated with HCV, Hepatitis B virus infection or alcoholic liver disease. DNA was isolated from formalin-fixed, paraffin-embedded tumour and non-tumour adjacent tissue and analysed by methylation-specific PCR. Moreover, microsatellite analysis was performed in tissues showing methylation in MMR gene promoters. Our data demonstrated that promoter methylation of MLH1, MSH2, PMS2 and p16 is present among all considered HCCs. Hereby, promoter silencing was detectable more frequently in advanced-stage HCCs than in low-stage ones. However, there was no significant correlation between aberrant DNA methylation of MMR genes or p16 and HCV infection in related HCC specimens. In summary, we show that promoter methylation of essential MMR genes and p16 is detectable in HCCs most dominantly in pT3 stage tumour cases. Since loss of MMR proteins was previously described to be not only responsible for tumour development but also for chemotherapy resistance, the knowledge of mechanisms jointly responsible for HCC progression might enable significant improvement of individual HCC therapy in the future.
Colorectal cancer (CRC) is a leading cause of cancer-related morbidity and mortality. In a cohort of 189 patients with CRC, we recently showed that expression of the cytoskeletal scaffolding protein non-erythroid spectrin αII (SPTAN1) was lower in advanced metastatic tumours. The aim of the present study was to clarify the association of intratumoural SPTAN1 expression levels with treatment and survival outcomes in patients with CRC. The analysis was based on histologic assessment of SPTAN1 protein levels in our own CRC cohort, and transcriptome data of 573 CRC cases from The Cancer Genome Atlas (TCGA). We first establish that high intratumoural levels of SPTAN1 protein and mRNA associate with favourable survival outcomes in patients with CRC. Next, a response prediction signature applied to the TCGA data reveals a possible link between high SPTAN1 transcript levels and improved patient responses to FOLFOX chemotherapy. Complementary in vitro experiments confirm that SPTAN1 knockdown strains of the colon cancer cell lines HT-29, HCT116 mlh1-2 and Caco-2 are less responsive to FOLFOX chemotherapy compared with SPTAN1-proficient control strains. Taken together, we identify SPTAN1 as a novel prognostic biomarker in CRC and show that SPTAN1 expression levels may predict patient responses to chemotherapy. These investigations illustrate how an affordable, histology-based diagnostic test could directly impact therapeutic decision-making at the bedside.
Introduction: Colorectal cancers (CRCs) deficient in the DNA mismatch repair protein MutL homolog 1 (MLH1) display distinct clinicopathological features and require a different therapeutic approach compared to CRCs with MLH1 proficiency. However, the molecular basis of this fundamental difference remains elusive. Here, we report that MLH1-deficient CRCs exhibit reduced levels of the cytoskeletal scaffolding protein non-erythroid spectrin αII (SPTAN1), and that tumor progression and metastasis of CRCs correlate with SPTAN1 levels.
Methods and results: To investigate the link between MLH1 and SPTAN1 in cancer progression, a cohort of 189 patients with CRC was analyzed by immunohistochemistry. Compared with the surrounding normal mucosa, SPTAN1 expression was reduced in MLH1-deficient CRCs, whereas MLH1-proficient CRCs showed a significant upregulation of SPTAN1. Overall, we identified a strong correlation between MLH1 status and SPTAN1 expression. When comparing TNM classification and SPTAN1 levels, we found higher SPTAN1 levels in stage I CRCs, while stages II to IV showed a gradual reduction of SPTAN1 expression. In addition, SPTAN1 expression was lower in metastatic compared with non-metastatic CRCs. Knockdown of SPTAN1 in CRC cell lines demonstrated decreased cell viability, impaired cellular mobility and reduced cell-cell contact formation, indicating that SPTAN1 plays an important role in cell growth and cell attachment. The observed weakened cell-cell contact of SPTAN1 knockdown cells might indicate that tumor cells expressing low levels of SPTAN1 detach from their primary tumor and metastasize more easily.
Conclusion: Taken together, we demonstrate that MLH1 deficiency, low SPTAN1 expression, and tumor progression and metastasis are in close relation. We conclude that SPTAN1 is a candidate molecule explaining the tumor progression and metastasis of MLH1-deficient CRCs. The detailed analysis of SPTAN1 is now mandatory to substantiate its relevance and its potential value as a candidate protein for targeted therapy, and as a predictive marker of cancer aggressiveness.