Refine
Year of publication
Document Type
- Article (381)
- Preprint (322)
- Part of Periodical (1)
Language
- English (704)
Has Fulltext
- yes (704)
Is part of the Bibliography
- no (704)
Keywords
- BESIII (20)
- e +-e − Experiments (20)
- Branching fraction (15)
- Particle and Resonance Production (9)
- Quarkonium (7)
- Charm Physics (6)
- Spectroscopy (6)
- Hadronic decays (5)
- QCD (5)
- Branching fractions (4)
Institute
- Physik (603)
- Frankfurt Institute for Advanced Studies (FIAS) (104)
- Informatik (7)
- Medizin (1)
Using (10087±44)×106 J/ψ events collected with the BESIII detector, numerous Ξ− and Λ decay asymmetry parameters are simultaneously determined from the process J/ψ→Ξ−Ξ¯+→Λ(pπ−)π−Λ¯(n¯π0)π+ and its charge-conjugate channel. The precisions of α0 for Λ→nπ0 and α¯0 for Λ¯→n¯π0 compared to world averages are improved by factors of 4 and 1.7, respectively. The ratio of decay asymmetry parameters of Λ→nπ0 to that of Λ→pπ−, ⟨α0⟩/⟨αΛ−⟩, is determined to be 0.873±0.012+0.011−0.010, where the first and the second uncertainties are statistical and systematic, respectively. The ratio is smaller than unity more than 5σ, which signifies the existence of the ΔI=3/2 transition in Λ for the first time. Beside, we test for CP violation in Ξ−→Λπ− and in Λ→nπ0 with the best precision to date.
Using data samples collected with the BESIII detector operating at the BEPCII storage ring, the cross section of the inclusive process e+e−→η+X, normalized by the total cross section of e+e−→hadrons, is measured at eight center-of-mass energy points from 2.0000 GeV to 3.6710 GeV. These are the first measurements with momentum dependence in this energy region. Our measurement shows a significant discrepancy from calculations with the existing fragmentation functions. To address this discrepancy, a new QCD analysis is performed at the next-to-next-to-leading order with hadron mass corrections and higher twist effects, which can explain both the established high-energy data and our measurements reasonably well.
Based on electron positron collision data collected with the BESIII detector operating at the BEPCII storage rings, the differential cross sections of inclusive π0 and K0S production as a function of hadron momentum, normalized by the total cross section of the e+e−→ hadrons process, are measured at six center-of-mass energies from 2.2324 to 3.6710 GeV. Our results with a relative hadron energy coverage from 0.1 to 0.9 significantly deviate from several theoretical calculations based on existing fragmentation functions, especially at lower energies.
Based on e+e− collision data collected at center-of-mass energies from 2.000 to 3.080 GeV by the BESIII detector at the BEPCII collider, a partial wave analysis isperformed for the process e+e− → K0SK0Lπ0. The results allow the Born cross sections of the process e+e− → K0SK0Lπ0, as well as its subprocesses e+e− → K∗(892)0K¯ 0 and K∗2(1430)0K¯ 0 to be measured. The Born cross sections for e+e− → K0SK0 Lπ 0 are consistent with previous measurements by BaBar, but with substantially improved precision. The Born cross section lineshape of the process e+e − → K∗(892)0K¯ 0 is consistent with a vector meson state around 2.2 GeV with a signifcance of 3.2σ. A Breit-Wigner ft determines its mass as MY = (2164.7 ± 9.1 ± 3.1) MeV/c2 and its width as ΓY = (32.4 ± 21.0 ± 1.8) MeV.
Based on electron positron collision data collected with the BESIII detector operating at the BEPCII storage rings, the differential cross sections of inclusive π0 and K0S production as a function of hadron momentum, normalized by the total cross section of the e+e−→ hadrons process, are measured at six center-of-mass energies from 2.2324 to 3.6710 GeV. Our results with a relative hadron energy coverage from 0.1 to 0.9 significantly deviate from several theoretical calculations based on existing fragmentation functions, especially at lower energies.
Based on e+e− collision data collected at center-of-mass energies from 2.000 to 3.080 GeV by the BESIII detector at the BEPCII collider, a partial wave analysis is performed for the process e+e−→K0SK0Lπ0. The results allow the Born cross sections of the process e+e−→K0SK0Lπ0, as well as its subprocesses e+e−→K∗(892)0K¯0 and K∗2(1430)0K¯0 to be measured. The Born cross sections for e+e−→K0SK0Lπ0 are consistent with previous measurements by BaBar, but with substantially improved precision. The Born cross section lineshape of the process e+e−→K∗(892)0K¯0 is consistent with a vector meson state around 2.2 GeV with a significance of 3.2σ. A Breit-Wigner fit determines its mass as MY=(2164.7±9.1±3.1) MeV/c2 and its width as ΓY=(32.4±21.0±1.8) MeV.
We report a search for a heavier partner of the recently observed Zcs(3985)− state, denoted as Z′−cs, in the process e+e−→K+D∗−sD∗0+c.c., based on e+e− collision data collected at the center-of-mass energies of s√=4.661, 4.682 and 4.699 GeV with the BESIII detector. The Z′−cs is of interest as it is expected to be a candidate for a hidden-charm and open-strange tetraquark. A partial-reconstruction technique is used to isolate K+ recoil-mass spectra, which are probed for a potential contribution from Z′−cs→D∗−sD∗0 (c.c.). We find an excess of Z′−cs→D∗−sD∗0 (c.c.) candidates with a significance of 2.1σ, after considering systematic uncertainties, at a mass of (4123.5±0.7stat.±4.7syst.) MeV/c2. As the data set is limited in size, the upper limits are evaluated at the 90\% confidence level on the product of the Born cross sections (σBorn) and the branching fraction (B) of Z′−cs→D∗−sD∗0, under different assumptions of the Z′−cs mass from 4.120 to 4.140 MeV and of the width from 10 to 50 MeV at the three center-of-mass energies. The upper limits of σBorn⋅B are found to be at the level of O(1) pb at each energy. Larger data samples are needed to confirm the Z′−cs state and clarify its nature in the coming years.
We report a search for a heavier partner of the recently observed Zcs(3985)− state, denoted as Z′−cs, in the process e+e−→K+D∗−sD∗0+c.c., based on e+e− collision data collected at the center-of-mass energies of s√=4.661, 4.682 and 4.699 GeV with the BESIII detector. The Z′−cs is of interest as it is expected to be a candidate for a hidden-charm and open-strange tetraquark. A partial-reconstruction technique is used to isolate K+ recoil-mass spectra, which are probed for a potential contribution from Z′−cs→D∗−sD∗0 (c.c.). We find an excess of Z′−cs→D∗−sD∗0 (c.c.) candidates with a significance of 2.9σ, after considering systematic uncertainties, at a mass of (4123.5±0.7stat.±1.1syst.)MeV/c2. As the data set is limited in size, the upper limits are evaluated at the 90% confidence level on the product of the Born cross section and the branching fraction of Z′−cs→D∗−sD∗0, σBorn⋅B at the three energy points, under different assumptions of the Z′−cs mass from 4.120 to 4.140 MeV and of the width from 10 to 50 MeV. Under various mass and width assumptions, the upper limits of σBorn⋅B are found to lie in the range of 2∼6, 3∼7 and 3∼6 pb at s√=4.661, 4.682 and 4.699 GeV, respectively. The larger data samples that will be collected in the coming years will allow a clearer picture to emerge concerning the existence and nature of the Z′−cs state.
We report a search for a heavier partner of the recently observed Zcs(3985)− state, denoted as Z′−cs, in the process e+e−→K+D∗−sD∗0+c.c., based on e+e− collision data collected at the center-of-mass energies of s√=4.661, 4.682 and 4.699 GeV with the BESIII detector. The Z′−cs is of interest as it is expected to be a candidate for a hidden-charm and open-strange tetraquark. A partial-reconstruction technique is used to isolate K+ recoil-mass spectra, which are probed for a potential contribution from Z′−cs→D∗−sD∗0 (c.c.). We find an excess of Z′−cs→D∗−sD∗0 (c.c.) candidates with a significance of 2.1σ, after considering systematic uncertainties, at a mass of (4123.5±0.7stat.±4.7syst.) MeV/c2. As the data set is limited in size, the upper limits are evaluated at the 90\% confidence level on the product of the Born cross sections (σBorn) and the branching fraction (B) of Z′−cs→D∗−sD∗0, under different assumptions of the Z′−cs mass from 4.120 to 4.140 MeV and of the width from 10 to 50 MeV at the three center-of-mass energies. The upper limits of σBorn⋅B are found to be at the level of O(1) pb at each energy. Larger data samples are needed to confirm the Z′−cs state and clarify its nature in the coming years.
The Cabbibo-favored decay Λ+c→Ξ0K+π0 is studied for the first time using 6.1 fb−1 of e+e− collision data at center-of-mass energies between 4.600 and 4.840 GeV, collected with the BESIII detector at the BEPCII collider. With a double-tag method, the branching fraction of the three-body decay Λ+c→Ξ0K+π0 is measured to be (7.79±1.46±0.71)×10−3, where the first and second uncertainties are statistical and systematic, respectively. The branching fraction of the two-body decay Λ+c→Ξ(1530)0K+ is (5.99±1.04±0.29)×10−3, which is consistent with the previous result of (5.02±0.99±0.31)×10−3. In addition, the upper limit on the branching fraction of the doubly Cabbibo-suppressed decay Λ+c→nK+π0 is 7.1×10−4 at the 90% confidence level. The upper limits on the branching fractions of Λ+c→Σ0K+π0 and ΛK+π0 are also determined to be 1.8×10−3 and 2.0×10−3, respectively.