Refine
Year of publication
Language
- English (596)
Has Fulltext
- yes (596)
Is part of the Bibliography
- no (596)
Keywords
- BESIII (20)
- e +-e − Experiments (20)
- Branching fraction (15)
- Particle and Resonance Production (9)
- Charm Physics (6)
- Quarkonium (6)
- Spectroscopy (6)
- Hadronic decays (5)
- QCD (5)
- Branching fractions (4)
The first amplitude analysis of the decay D+s→K−K+π+π0 is presented using the data samples, corresponding to an integrated luminosity of 6.32 fb−1, collected with the BESIII detector at e+e− center-of-mass energies between 4.178 and 4.226 GeV. More than 3000 events selected with a purity of 97.5\% are used to perform the amplitude analysis, and nine components are found necessary to describe the data. Relative fractions and phases of the intermediate decays are determined. With the detection efficiency estimated by the results of the amplitude analysis, the branching fraction of D+s→K−K+π+π0 decay is measured to be (5.42±0.10stat.±0.17syst.)%.
We present the first amplitude analysis of the decay D+s→K−K+π+π0 using data samples of 6.32 fb−1 recorded with the BESIII detector between 4.178 and 4.226 GeV. More than 3000 events selected with a purity of 97.5\% are used to perform the amplitude analysis, and nine components are found necessary to describe the data. Relative fractions and phases of the intermediate decays are determined. With the detection efficiency determined by the results of the amplitude analysis, we measure the branching fraction of D+s→K−K+π+π0 decay to be (5.42±0.10stat.±0.17syst.)%.
Though immensely successful, the standard model of particle physics does not offer any explanation as to why our Universe contains so much more matter than antimatter. A key to a dynamically generated matter–antimatter asymmetry is the existence of processes that violate the combined charge conjugation and parity (CP) symmetry1. As such, precision tests of CP symmetry may be used to search for physics beyond the standard model. However, hadrons decay through an interplay of strong and weak processes, quantified in terms of relative phases between the amplitudes. Although previous experiments constructed CP observables that depend on both strong and weak phases, we present an approach where sequential two-body decays of entangled multi-strange baryon–antibaryon pairs provide a separation between these phases. Our method, exploiting spin entanglement between the double-strange Ξ− baryon and its antiparticle2 Ξ¯+
, has enabled a direct determination of the weak-phase difference, (ξP − ξS) = (1.2 ± 3.4 ± 0.8) × 10−2 rad. Furthermore, three independent CP observables can be constructed from our measured parameters. The precision in the estimated parameters for a given data sample size is several orders of magnitude greater than achieved with previous methods3. Finally, we provide an independent measurement of the recently debated Λ decay parameter αΛ (refs. 4,5). The ΛΛ¯
asymmetry is in agreement with and compatible in precision to the most precise previous measurement.
Using 2.93 fb−1 of e+e− collision data collected with the BESIII detector at a center-of-mass energy of 3.773 GeV, we measure the absolute branching fractions of the decays D0→K−e+νe and D+→K¯0e+νe to be (3.567±0.031stat±0.025syst)% and (8.68±0.14stat±0.16syst)%, respectively. Starting with the process e+e−→DD¯, a new reconstruction method is employed to select events that contain candidates for both D→K¯e+νe and D¯→Ke−ν¯e decays. The branching fractions reported in this work are consistent within uncertainties with previous BESIII measurements that selected events containing D→K¯e+νe and hadronic D¯ decays. Combining our results with the lifetimes of the D0 and D+ mesons and the previous BESIII measurements leads to a ratio of the two decay partial widths of Γ¯D0→K−e+νeΓ¯D+→K¯0e+νe=1.039±0.021. This ratio supports isospin symmetry in the D0→K−e+νe and D+→K¯0e+νe decays within 1.9σ.
Using 2.93 fb−1 of e+e− collision data collected with the BESIII detector at a center-of-mass energy of 3.773~GeV, we measure the absolute branching fractions of the decays D0→K−e+νe and D+→K¯0e+νe to be (3.574±0.031stat±0.025syst)% and (8.70±0.14stat±0.16syst)%, respectively. Starting with the process e+e−→DD¯, a new reconstruction method is employed to select events that contain candidates for both D→K¯e+νe and D¯→Ke−ν¯e decays. The branching fractions reported in this work are consistent within uncertainties with previous BESIII measurements that selected events containing D→K¯e+νe and inclusive hadronic D¯ decays. Combining our results with the lifetimes of the D0 and D+ mesons and the previous BESIII measurements leads to a ratio of the two decay partial widths of Γ¯D0→K−e+νeΓ¯D+→K¯0e+νe=1.040±0.021. This ratio supports isospin symmetry in the D0→K−e+νe and D+→K¯0e+νe decays within 1.9σ.
Using 2.93 fb−1 of e+e− collision data collected with the BESIII detector at a center-of-mass energy of 3.773 GeV, we measure the absolute branching fractions of the decays D0→K−e+νe and D+→K¯0e+νe to be (3.567±0.031stat±0.025syst)% and (8.68±0.14stat±0.16syst)%, respectively. Starting with the process e+e−→DD¯, a new reconstruction method is employed to select events that contain candidates for both D→K¯e+νe and D¯→Ke−ν¯e decays. The branching fractions reported in this work are consistent within uncertainties with previous BESIII measurements that selected events containing D→K¯e+νe and hadronic D¯ decays. Combining our results with the lifetimes of the D0 and D+ mesons and the previous BESIII measurements leads to a ratio of the two decay partial widths of Γ¯D0→K−e+νeΓ¯D+→K¯0e+νe=1.039±0.021. This ratio supports isospin symmetry in the D0→K−e+νe and D+→K¯0e+νe decays within 1.9σ.
Using 6.32 fb−1 of electron-positron collision data recorded by the BESIII detector at center-of-mass energies between 4.178 and 4.226~GeV, we present the first search for the decay D+s→a0(980)0e+νe, a0(980)0→π0η, which could proceed via a0(980)-f0(980) mixing. No significant signal is observed. An upper limit of 1.2×10−4 at the 90% confidence level is set on the product of the branching fractions of D+s→a0(980)0e+νe and a0(980)0→π0η decays.
Using 2.93 fb−1 of e+e− collision data taken with the BESIII detector at a center-of-mass energy of 3.773 GeV, the observation of the D0→K1(1270)−e+νe semileptonic decay is presented. The statistical significance of the decay D0→K1(1270)−e+νe is greater than 10σ. The branching fraction of D0→K1(1270)−e+νe is measured to be (1.09±0.13+0.09−0.13±0.12)×10−3. Here, the first uncertainty is statistical, the second is systematic, and the third originates from the assumed branching fraction of K1(1270)−→K−π+π−.
Using 2.93 fb−1 of e+e− collision data taken with the BESIII detector at a center-of-mass energy of 3.773 GeV, the observation of the D0→K1(1270)−e+νe semileptonic decay is presented. The statistical significance of the decay D0→K1(1270)−e+νe is greater than 10σ. The branching fraction of D0→K1(1270)−e+νe is measured to be (1.09±0.13+0.09−0.16±0.12)×10−3. Here, the first uncertainty is statistical, the second is systematic, and the third originates from the assumed branching fraction of K1(1270)−→K−π+π−. The fraction of longitudinal polarization in D0→K1(1270)−e+νe is determined for the first time to be 0.50±0.19stat±0.08syst.
A search for the charged lepton flavor violating decay 𝐽/𝜓→𝑒±𝜏∓ with 𝜏∓→𝜋∓𝜋0𝜈𝜏 is performed with about 10×109 𝐽/𝜓 events collected with the BESIII detector at the BEPCII. No significant signal is observed, and an upper limit is set on the branching fraction ℬ(𝐽/𝜓→𝑒±𝜏∓)<7.5×10−8 at the 90% confidence level. This improves the previously published limit by two orders of magnitude.