Refine
Year of publication
Document Type
- Article (465)
- Preprint (333)
- Part of Periodical (1)
Language
- English (799)
Has Fulltext
- yes (799)
Is part of the Bibliography
- no (799)
Keywords
- BESIII (20)
- e +-e − Experiments (20)
- Branching fraction (15)
- LHC (9)
- Particle and Resonance Production (9)
- Quarkonium (7)
- Charm Physics (6)
- Heavy-ion collisions (6)
- Spectroscopy (6)
- Hadronic decays (5)
Institute
- Physik (685)
- Frankfurt Institute for Advanced Studies (FIAS) (166)
- Informatik (61)
- Medizin (4)
- Geowissenschaften (1)
- Geowissenschaften / Geographie (1)
Using (2712.4±14.3)×106 ψ(3686) events collected with the BESIII detector operating at the BEPCII collider, we search for the hadronic transition hc→π+π−J/ψ via ψ(3686)→π0hc. No significant signal is observed. We set the most stringent upper limits to date on the branching fractions B(ψ(3686)→π0hc)×B(hc→π+π−J/ψ) and B(hc→π+π−J/ψ) at the 90% confidence level, which are determined to be 6.7×10−7 and 9.4×10−4, respectively.
The process 𝑒+𝑒−→Σ+¯Σ− is studied from threshold up to 3.04 GeV/𝑐2 via the initial-state radiation technique using data with an integrated luminosity of 12.0 fb−1, collected at center-of-mass energies between 3.773 and 4.258 GeV with the BESIII detector at the BEPCII collider. The pair production cross sections and the effective form factors of Σ are measured in eleven Σ+¯Σ− invariant mass intervals from threshold to 3.04 GeV/𝑐2. The results are consistent with the previous results from Belle and BESIII. Furthermore, the branching fractions of the decays 𝐽/𝜓→Σ+¯Σ− and 𝜓(3686)→Σ+¯Σ− are determined and the obtained results are consistent with the previous results of BESIII.
We report the first measurements of the absolute branching fractions of D0 → K0 Lϕ, D0 → K0Lη, D0 → K0Lω, and D0 → K0Lη0, by analyzing 2.93 fb−1 of eþe− collision data taken at a center-of-mass energy of 3.773 GeV with the BESIII detector. Taking the world averages of the branching fractions of D0 → K0Sϕ, D0 → K0Sη, D0 → K0Sω, and D0 → K0Sη0, the K0S − K0L asymmetries RðD0; XÞ in these decay modes are obtained. The CP asymmetries in these decays are also determined. No significant CP violation is observed
Using data samples collected with the BESIII detector operating at the BEPCII storage ring, the cross section of the inclusive process e+e−→η+X, normalized by the total cross section of e+e−→hadrons, is measured at eight center-of-mass energy points from 2.0000 GeV to 3.6710 GeV. These are the first measurements with momentum dependence in this energy region. Our measurement shows a significant discrepancy from calculations with the existing fragmentation functions. To address this discrepancy, a new QCD analysis is performed at the next-to-next-to-leading order with hadron mass corrections and higher twist effects, which can explain both the established high-energy data and our measurements reasonably well.
Based on electron positron collision data collected with the BESIII detector operating at the BEPCII storage rings, the differential cross sections of inclusive π0 and K0S production as a function of hadron momentum, normalized by the total cross section of the e+e−→ hadrons process, are measured at six center-of-mass energies from 2.2324 to 3.6710 GeV. Our results with a relative hadron energy coverage from 0.1 to 0.9 significantly deviate from several theoretical calculations based on existing fragmentation functions, especially at lower energies.
Based on electron positron collision data collected with the BESIII detector operating at the BEPCII storage rings, the differential cross sections of inclusive π0 and K0S production as a function of hadron momentum, normalized by the total cross section of the e+e−→ hadrons process, are measured at six center-of-mass energies from 2.2324 to 3.6710 GeV. Our results with a relative hadron energy coverage from 0.1 to 0.9 significantly deviate from several theoretical calculations based on existing fragmentation functions, especially at lower energies.
We report a search for a heavier partner of the recently observed Zcs(3985)− state, denoted as Z′−cs, in the process e+e−→K+D∗−sD∗0+c.c., based on e+e− collision data collected at the center-of-mass energies of s√=4.661, 4.682 and 4.699 GeV with the BESIII detector. The Z′−cs is of interest as it is expected to be a candidate for a hidden-charm and open-strange tetraquark. A partial-reconstruction technique is used to isolate K+ recoil-mass spectra, which are probed for a potential contribution from Z′−cs→D∗−sD∗0 (c.c.). We find an excess of Z′−cs→D∗−sD∗0 (c.c.) candidates with a significance of 2.1σ, after considering systematic uncertainties, at a mass of (4123.5±0.7stat.±4.7syst.) MeV/c2. As the data set is limited in size, the upper limits are evaluated at the 90\% confidence level on the product of the Born cross sections (σBorn) and the branching fraction (B) of Z′−cs→D∗−sD∗0, under different assumptions of the Z′−cs mass from 4.120 to 4.140 MeV and of the width from 10 to 50 MeV at the three center-of-mass energies. The upper limits of σBorn⋅B are found to be at the level of O(1) pb at each energy. Larger data samples are needed to confirm the Z′−cs state and clarify its nature in the coming years.
We report a search for a heavier partner of the recently observed Zcs(3985)− state, denoted as Z′−cs, in the process e+e−→K+D∗−sD∗0+c.c., based on e+e− collision data collected at the center-of-mass energies of s√=4.661, 4.682 and 4.699 GeV with the BESIII detector. The Z′−cs is of interest as it is expected to be a candidate for a hidden-charm and open-strange tetraquark. A partial-reconstruction technique is used to isolate K+ recoil-mass spectra, which are probed for a potential contribution from Z′−cs→D∗−sD∗0 (c.c.). We find an excess of Z′−cs→D∗−sD∗0 (c.c.) candidates with a significance of 2.9σ, after considering systematic uncertainties, at a mass of (4123.5±0.7stat.±1.1syst.)MeV/c2. As the data set is limited in size, the upper limits are evaluated at the 90% confidence level on the product of the Born cross section and the branching fraction of Z′−cs→D∗−sD∗0, σBorn⋅B at the three energy points, under different assumptions of the Z′−cs mass from 4.120 to 4.140 MeV and of the width from 10 to 50 MeV. Under various mass and width assumptions, the upper limits of σBorn⋅B are found to lie in the range of 2∼6, 3∼7 and 3∼6 pb at s√=4.661, 4.682 and 4.699 GeV, respectively. The larger data samples that will be collected in the coming years will allow a clearer picture to emerge concerning the existence and nature of the Z′−cs state.
We report a search for a heavier partner of the recently observed Zcs(3985)− state, denoted as Z′−cs, in the process e+e−→K+D∗−sD∗0+c.c., based on e+e− collision data collected at the center-of-mass energies of s√=4.661, 4.682 and 4.699 GeV with the BESIII detector. The Z′−cs is of interest as it is expected to be a candidate for a hidden-charm and open-strange tetraquark. A partial-reconstruction technique is used to isolate K+ recoil-mass spectra, which are probed for a potential contribution from Z′−cs→D∗−sD∗0 (c.c.). We find an excess of Z′−cs→D∗−sD∗0 (c.c.) candidates with a significance of 2.1σ, after considering systematic uncertainties, at a mass of (4123.5±0.7stat.±4.7syst.) MeV/c2. As the data set is limited in size, the upper limits are evaluated at the 90\% confidence level on the product of the Born cross sections (σBorn) and the branching fraction (B) of Z′−cs→D∗−sD∗0, under different assumptions of the Z′−cs mass from 4.120 to 4.140 MeV and of the width from 10 to 50 MeV at the three center-of-mass energies. The upper limits of σBorn⋅B are found to be at the level of O(1) pb at each energy. Larger data samples are needed to confirm the Z′−cs state and clarify its nature in the coming years.
Improved measurement of the branching fractions of the inclusive decays D⁺ → Kₛ⁰X and D⁰ → Kₛ⁰X
(2023)
By analyzing 2.93 fb−1 of 𝑒+𝑒− collision data taken at the center-of-mass energy of 3.773 GeV with the BESIII detector, the branching fractions of the inclusive decays 𝐷+→𝐾0 𝑆𝑋 and 𝐷0→𝐾0 𝑆𝑋 are measured to be (33.11±0.13±0.36)% and (20.75±0.12±0.20)%, respectively, where the first uncertainties are statistical and the second are systematic. These results are consistent with the world averages of previous measurements, but with much improved precision.