### Refine

#### Document Type

- Article (5)
- Preprint (3)
- Conference Proceeding (1)
- Contribution to a Periodical (1)

#### Has Fulltext

- yes (10)

#### Is part of the Bibliography

- no (10)

#### Keywords

- Equation of State (1)
- Heavy-ion collision (1)
- Monte-Carlo simulations (1)
- Nuclear Physics (1)
- Relativistic heavy-ion collisions (1)
- Resonances (1)
- SMASH (1)
- baryon stopping (1)
- bulk viscosity (1)
- hadron gas (1)

#### Institute

- Physik (10)
- Frankfurt Institute for Advanced Studies (FIAS) (3)
- Informatik (1)
- Präsidium (1)

The changing shape of the rapidity spectrum of net protons over the SPS energy range is still lacking theoretical understanding. In this work, a model for string excitation and string fragmentation is implemented for the description of high energy collisions within a hadronic transport approach. The free parameters of the string model are tuned to reproduce the experimentally measured particle production in proton-proton collisions. With the fixed parameters we advance to calculations for heavy ion collisions, where the shape of the proton rapidity spectrum changes from a single peak to a double peak structure with increasing beam energy in the experiment. We present calculations of proton rapidity spectra at different SPS energies in heavy ion collisions. Qualitatively, a good agreement with the experimental findings is obtained. In a future work, the formation process of string fragments will be studied in detail aiming to quantitatively reproduce the measurement.

We estimate the temperature dependence of the bulk viscosity in a relativistic hadron gas. Employing the Green–Kubo formalism in the SMASH (Simulating Many Accelerated Strongly-interacting Hadrons) transport approach, we study different hadronic systems in increasing order of complexity. We analyze the (in)validity of the single exponential relaxation ansatz for the bulk-channel correlation function and the strong influence of the resonances and their lifetimes. We discuss the difference between the inclusive bulk viscosity of an equilibrated, long-lived system, and the effective bulk viscosity of a short-lived mixture like the hadronic phase of relativistic heavy-ion collisions, where the processes whose inverse relaxation rate are larger than the fireball duration are excluded from the analysis. This clarifies the differences between previous approaches which computed the bulk viscosity including/excluding the very slow processes in the hadron gas. We compare our final results with previous hadron gas calculations and confirm a decreasing trend of the inclusive bulk viscosity over entropy density as temperature increases, whereas the effective bulk viscosity to entropy ratio, while being lower than the inclusive one, shows no strong dependence to temperature.

In the past two decades, pions created in the high density regions of heavy ion collisions have been predicted to be sensitive at high densities to the symmetry energy term in the nuclear equation of state, a property that is key to our understanding of neutron stars. In a new experiment designed to study the symmetry energy, the multiplicities of negatively and positively charged pions have been measured with high accuracy for central 132Sn+124Sn, 112Sn+124Sn, and 108Sn+112Sn collisions at E/A = 270 MeV with the SπRIT Time Projection Chamber. While individual pion multiplicities are measured to 4% accuracy, those of the charged pion multiplicity ratios are measured to 2% accuracy. We compare these data to predictions from seven major transport models. The calculations reproduce qualitatively the dependence of the multiplicities and their ratios on the total neutron and proton number in the colliding systems. However, the predictions of the transport models from different codes differ too much to allow extraction of reliable constraints on the symmetry energy from the data. This finding may explain previous contradictory conclusions on symmetry energy constraints obtained from pion data in Au+Au system. These new results call for still better understanding of the differences among transport codes, and new observables that are more sensitive to the density dependence of the symmetry energy.

Using combined data from the Relativistic Heavy Ion and Large Hadron Colliders, we constrain the shear and bulk viscosities of quark-gluon plasma (QGP) at temperatures of ∼150–350 MeV. We use Bayesian inference to translate experimental and theoretical uncertainties into probabilistic constraints for the viscosities. With Bayesian model averaging we propagate an estimate of the model uncertainty generated by the transition from hydrodynamics to hadron transport in the plasma’s final evolution stage, providing the most reliable phenomenological constraints to date on the QGP viscosities.

Recent lattice QCD results, comparing to a hadron resonance gas model, have shown the need for hundreds of particles in hadronic models. These extra particles influence both the equation of state and hadronic interactions within hadron transport models. Here, we introduce the PDG21+ particle list, which contains the most up-to-date database of particles and their properties. We then convert all particles decays into 2 body decays so that they are compatible with SMASH in order to produce a more consistent description of a heavy-ion collision.

Hadron lists based on experimental studies summarized by the Particle Data Group (PDG) are a crucial input for the equation of state and thermal models used in the study of strongly-interacting matter produced in heavy-ion collisions. Modeling of these strongly-interacting systems is carried out via hydrodynamical simulations, which are followed by hadronic transport codes that also require a hadronic list as input. To remain consistent throughout the different stages of modeling of a heavy-ion collision, the same hadron list with its corresponding decays must be used at each step. It has been shown that even the most uncertain states listed in the PDG from 2016 are required to reproduce partial pressures and susceptibilities from Lattice Quantum Chromodynamics with the hadronic list known as the PDG2016+. Here, we update the hadronic list for use in heavy-ion collision modeling by including the latest experimental information for all states listed in the Particle Data Booklet in 2021. We then compare our new list, called PDG2021+, to Lattice Quantum Chromodynamics results and find that it achieves even better agreement with the first principles calculations than the PDG2016+ list. Furthermore, we develop a novel scheme based on intermediate decay channels that allows for only binary decays, such that PDG2021+ will be compatible with the hadronic transport framework SMASH. Finally, we use these results to make comparisons to experimental data and discuss the impact on particle yields and spectra.

Effective spectral functions of the ρ meson are reconstructed by considering the lifetimes inside different media using the hadronic transport SMASH (Simulating Many Accelerated Strongly-interacting Hadrons). Due to inelastic scatterings, resonance lifetimes are dynamically shortened (collisional broadening), even though the employed approach assumes vacuum resonance properties. Analyzing the ρ meson lifetimes allows to quantify an effective broadening of the decay width and spectral function, which is important in order to distinguish dynamical effects from additional genuine medium modifications to the spectral functions, indicating e.g. an onset of chiral symmetry restoration. The broadening of the spectral function in a thermalized system is shown to be consistent with other theoretical calculations. The effective ρ meson spectral function is also presented for the dynamical evolution of heavy-ion collisions, finding a clear correlation of the broadening to system size, which is explained by an observed dependence of the width on the local hadron density. Furthermore, the difference in the results between the thermal system and full collision dynamics is explored, which may point to non-equilibrium effects.

The exploration of hot and dense nuclear matter: Introduction to relativistic heavy-ion physics
(2022)

This article summarizes our present knowledge about nuclear matter at the highest energy densities and its formation in relativistic heavy ion collisions. We review what is known about the structure and properties of the quark-gluon plasma and survey the observables that are used to glean information about it from experimental data.

To assess the degree of equilibration of the matter created in heavy-ion reactions at low to intermediate beam energies, a hadronic transport approach (SMASH) is employed. By using a coarse-graining method, we compute the energy momentum tensor of the system at fixed time steps and evaluate the degree of isotropy of the diagonal terms and the relative magnitude of the off-diagonal terms. This study focuses mostly on Au+Au collisions in the energy range s√NN
= 2.4–7.7 GeV, but central collisions of lighter ions like C+C, Ar+KCl and Ag+Ag are considered as well. We find that the conditions concerning local equilibration for a hydrodynamic description are reasonably satisfied in a large portion of the system for a significant amount of time (several fm/c) when considering the average evolution of many events, yet they are rarely fulfilled on an event by event basis. This is relevant for the application of hybrid approaches at low beam energies as they are or will be reached by the HADES experiment at GSI, the future CBM experiment at FAIR as well as the beam energy scan program at RHIC.