Refine
Year of publication
Document Type
- Article (20)
- Doctoral Thesis (1)
Language
- English (21)
Has Fulltext
- yes (21)
Is part of the Bibliography
- no (21)
Keywords
- uncertainty (2)
- ANOVA (1)
- Australia (1)
- BSRN (1)
- CABLE (1)
- Calibration (1)
- Catchment hydrological models (1)
- Climate change (1)
- Climate data (1)
- Climate sciences (1)
Evaluation of radiation components in a global freshwater model with station-based observations
(2016)
In many hydrological models, the amount of evapotranspired water is calculated using the potential evapotranspiration (PET) approach. The main driver of several PET approaches is net radiation, whose downward components are usually obtained from meteorological input data, whereas the upward components are calculated by the model itself. Thus, uncertainties can be large due to both the input data and model assumptions. In this study, we compare the radiation components of the WaterGAP Global Hydrology Model, driven by two meteorological input datasets and two radiation setups from ERA-Interim reanalysis. We assess the performance with respect to monthly observations provided by the Baseline Surface Radiation Network (BSRN) and the Global Energy Balance Archive (GEBA). The assessment is done for the global land area and specifically for energy/water limited regions. The results indicate that there is no optimal radiation input throughout the model variants, but standard meteorological input datasets perform better than those directly obtained by ERA-Interim reanalysis for the key variable net radiation. The low number of observations for some radiation components, as well as the scale mismatch between station observations and 0.5° × 0.5° grid cell size, limits the assessment.
Global-scale assessments of freshwater fluxes and storages by hydrological models under historic climate conditions are subject to a variety of uncertainties. Using the global hydrological model WaterGAP 2.2, we investigated the sensitivity of simulated freshwater fluxes and water storage variations to five major sources of uncertainty: climate forcing, land cover input, model structure, consideration of human water use and calibration (or no calibration). In a modelling experiment, five variants of the standard version of WaterGAP 2.2 were generated that differed from the standard version only regarding the investigated source of uncertainty. Sensitivity was analyzed by comparing water fluxes and water storage variations computed by the variants to those of the standard version, considering both global averages and grid cell values for the time period 1971–2000. The basin-specific calibration approach for WaterGAP, which forces simulated mean annual river discharge to be equal to observed values at 1319 gauging stations (representing 54% of global land area except Antarctica and Greenland), has the highest effect on modelled water fluxes and leads to the best fit of modelled to observed monthly and seasonal river discharge. Alternative state-of-the-art climate forcings rank second regarding the impact on grid cell specific fluxes and water storage variations, and their impact is ubiquitous and stronger than that of alternative land cover inputs. The diverse model refinements during the last decade lead to an improved fit to observed discharge, and affect globally averaged fluxes and storage values (the latter mainly due to modelling of groundwater depletion) but only affect a relatively small number of grid cells. Considering human water use is important for the global water storage trend (in particular in the groundwater compartment) but impacts on water fluxes are rather local and only important where water use is high. The best fit to observed time series of monthly river discharge (Nash–Sutcliffe criterion) or discharge seasonality is obtained with the standard WaterGAP 2.2 model version which is calibrated and driven by a sequence of two time series of daily observation-based climate forcings, WFD/WFDEI. Discharge computed by a calibrated model version using monthly CRU 3.2 and GPCC v6 climate input reduced the fit to observed discharge for most stations. Taking into account the investigated uncertainties of climate and land cover data, we estimate that the global 1971–2000 discharge into oceans and inland sinks is between 40 000 and 42 000 km3 yr−1. The range is mainly due differences in precipitation data that affect discharge in uncalibrated river basins. Actual evapotranspiration, with approximately 70 000 km3 yr−1, is rather unaffected by climate and land cover in global sum but differs spatially. Human water use is calculated to reduce river discharge by approximately 1000 km3 yr−1. Thus, global renewable water resources are estimated to range between 41 000 and 43 000 km3 yr−1. The climate data sets WFD (available until 2001) and WFDEI (starting in 1979) were found to be inconsistent with respect to short wave radiation data, resulting in strongly different potential evapotranspiration. Global assessments of freshwater fluxes and storages would therefore benefit from the development of a global data set of consistent daily climate forcing from 1900 to current.
The estimation of water balance components as well as water-related indicators on the land surface by means of global hydrological models have evolved in recent decades. Results of such models are frequently used in global- and continental-scale assessments of the current and future state of the terrestrial water cycle and provide a valuable data basis, e.g., for the Intergovernmental Panel on Climate Change. The Water – Global Assessment and Prognosis (WaterGAP) model is one of the state-of-the-art models in that field and has been in development and application for around 20 years. The evaluation, modification and application of WaterGAP is the subject of this thesis. In particular, the sensitivity of climate input data on radiation calculation and simulated water fluxes and storages is evaluated in the first part. Effects of model modification such as updated spatial input datasets, improved process representation or an alternative calibration scheme are the focus of the second part. Finally, three applications of WaterGAP give insight into the capabilities of that model, namely an estimate of global and continental water balance components, an assessment of groundwater depletion and the impact of climate change on river flow regimes. Model experiments, which are described in six journal papers as well as the appendices, were used as the basis for answering the total of 13 research questions. One of the major foci was to quantify the sensitivity of simulated water fluxes and storages to alternative climate input data. It was found that the handling of precipitation undercatch leads to the greatest difference in water balance components, especially in those areas where WaterGAP is not calibrated due to a lack of river discharge observations. The modifications of WaterGAP in the last few decades has led in general to an improved simulation of monthly river discharge, but process representation in semi-arid and arid regions still requires improvements. With the most current model version, WaterGAP 2.2b, and for the time period 1971–2000, river discharge to the oceans and inland sinks is estimated to be 40 000 km3 yr-1, whereas actual evapotranspiration is simulated as 70 500 km3 yr-1. Future research needs for WaterGAP in particular but also for the global hydrological model community in general are defined, promoting a community-driven effort for a robust assessment of the continental water cycle.
Global impact models represent process-level understanding of how natural and human systems may be affected by climate change. Their projections are used in integrated assessments of climate change. Here we test, for the first time, systematically across many important systems, how well such impact models capture the impacts of extreme climate conditions. Using the 2003 European heat wave and drought as a historical analogue for comparable events in the future, we find that a majority of models underestimate the extremeness of impacts in important sectors such as agriculture, terrestrial ecosystems, and heat-related human mortality, while impacts on water resources and hydropower are overestimated in some river basins; and the spread across models is often large. This has important implications for economic assessments of climate change impacts that rely on these models. It also means that societal risks from future extreme events may be greater than previously thought.
Droughts are anticipated to intensify in many parts of the world due to climate change. However, the issue of drought definition, namely the diversity of drought indices, makes it difficult to compare drought assessments. This issue is widely known, but its relative importance has never been quantitatively evaluated in comparison to other sources of uncertainty. Here, encompassing three drought categories (meteorological, agricultural, and hydrological droughts) with four temporal scales of interest, we evaluated changes in the drought frequency using multi-model and multi-scenario simulations to identify areas where the definition issue could result in pronounced uncertainties and to what extent. We investigated the disagreement in the signs of changes between drought definitions and decomposed the variance into four main factors: drought definitions, greenhouse gas concentration scenarios, global climate models, and global water models, as well as their interactions. The results show that models were the primary sources of variance over 82% of the global land area. On the other hand, the drought definition was the dominant source of variance in the remaining 17%, especially in parts of northern high-latitudes. Our results highlight specific regions where differences in drought definitions result in a large spread among projections, including areas showing opposite signs of significant changes. At a global scale, 7% of the variance resulted independently from the definition issue, and that value increased to 44% when 1st and 2nd order interactions were considered. The quantitative results suggest that by clarifying hydrological processes or sectors of interest, one could avoid these uncertainties in drought assessments to obtain a clearer picture of future drought change.
Global hydrological models enhance our understanding of the Earth system and support the sustainable management of water, food and energy in a globalized world. They integrate process knowledge with a multitude of model input data (e.g., precipitation, soil properties, and the location and extent of surface waterbodies) to describe the state of the Earth. However, they do not fully utilize observations of model output variables (e.g., streamflow and water storage) to reduce and quantify model output uncertainty through processes like parameter estimation. For a pilot region, the Mississippi River basin, we assessed the suitability of three ensemble-based multi-variable approaches to amend this: Pareto-optimal calibration (POC); the generalized likelihood uncertainty estimation (GLUE); and the ensemble Kalman filter, here modified for joint calibration and data assimilation (EnCDA). The paper shows how observations of streamflow (Q) and terrestrial water storage anomaly (TWSA) can be utilized to reduce and quantify the uncertainty of model output by identifying optimal and behavioral parameter sets for individual drainage basins. The common first steps in all approaches are (1) the definition of drainage basins for which calibration parameters are uniformly adjusted (CDA units), combined with the selection of observational data; (2) the identification of potential calibration parameters and their a priori probability distributions; and (3) sensitivity analyses to select the most influential model parameters per CDA unit that will be adjusted by calibration. Data assimilation with the ensemble Kalman filter was modified, to our knowledge, for the first time for a global hydrological model to assimilate both TWSA and Q with simultaneous parameter adjustment. In the estimation of model output uncertainty, we considered the uncertainties of the Q and TWSA observations. Applying the global hydrological model WaterGAP, we found that the POC approach is best suited for identifying a single “optimal” parameter set for each CDA unit. This parameter set leads to an improved fit to the monthly time series of both Q and TWSA as compared to the standard WaterGAP variant, which is only calibrated against mean annual Q, and can be used to compute the best estimate of WaterGAP output. The GLUE approach is almost as successful as POC in increasing WaterGAP performance and also allows, with a comparable computational effort, the estimation of model output uncertainties that are due to the equifinality of parameter sets given the observation uncertainties. Our experiment reveals that the EnCDA approach performs similarly to POC and GLUE in most CDA units during the assimilation phase but is not yet competitive for calibrating global hydrological models; its potential advantages remain unrealized, likely due to its high computational burden, which severely limits the ensemble size, and the intrinsic nonlinearity in simulating Q. Partitioning the whole Mississippi River basin into five CDA units (sub-basins) instead of only one improved model performance in terms of the Nash–Sutcliffe efficiency during the calibration and validation periods. Diverse parameter sets achieved comparable fits to observations, narrowing the range for at least three parameters. Low coverage of observation uncertainty bands by GLUE-derived model output bands is attributed to model structure uncertainties, especially regarding artificial reservoir operations, the location and extent of small wetlands, and the lack of representation of rivers that may lose water to the subsurface. These uncertainties are also likely to be responsible for significant trade-offs between optimal fits to Q and TWSA. Calibration performed exclusively against TWSA in regions without Q observations may worsen the Q simulation as compared to the uncalibrated model variant. We recommend that modelers improve the realism of the output of global hydrological models by calibrating them against observations of multiple output variables, including at least Q and TWSA. Further work on improving the numerical efficiency of the EnCDA approach is necessary.
When assessing global water resources with hydrological models, it is essential to know about methodological uncertainties. The values of simulated water balance components may vary due to different spatial and temporal aggregations, reference periods, and applied climate forcings, as well as due to the consideration of human water use, or the lack thereof. We analyzed these variations over the period 1901–2010 by forcing the global hydrological model WaterGAP 2.2 (ISIMIP2a) with five state-of-the-art climate data sets, including a homogenized version of the concatenated WFD/WFDEI data set. Absolute values and temporal variations of global water balance components are strongly affected by the uncertainty in the climate forcing, and no temporal trends of the global water balance components are detected for the four homogeneous climate forcings considered (except for human water abstractions). The calibration of WaterGAP against observed long-term average river discharge Q significantly reduces the impact of climate forcing uncertainty on estimated Q and renewable water resources. For the homogeneous forcings, Q of the calibrated and non-calibrated regions of the globe varies by 1.6 and 18.5 %, respectively, for 1971–2000. On the continental scale, most differences for long-term average precipitation P and Q estimates occur in Africa and, due to snow undercatch of rain gauges, also in the data-rich continents Europe and North America. Variations of Q at the grid-cell scale are large, except in a few grid cells upstream and downstream of calibration stations, with an average variation of 37 and 74 % among the four homogeneous forcings in calibrated and non-calibrated regions, respectively. Considering only the forcings GSWP3 and WFDEI_hom, i.e., excluding the forcing without undercatch correction (PGFv2.1) and the one with a much lower shortwave downward radiation SWD than the others (WFD), Q variations are reduced to 16 and 31 % in calibrated and non-calibrated regions, respectively. These simulation results support the need for extended Q measurements and data sharing for better constraining global water balance assessments. Over the 20th century, the human footprint on natural water resources has become larger. For 11–18% of the global land area, the change of Q between 1941–1970 and 1971–2000 was driven more strongly by change of human water use including dam construction than by change in precipitation, while this was true for only 9–13 % of the land area from 1911–1940 to 1941–1970.
When assessing global water resources with hydrological models, it is essential to know the methodological uncertainties in the water resources estimates. The study presented here quantifies effects of the uncertainty in the spatial and temporal patterns of meteorological variables on water balance components at the global, continental and grid cell scale by forcing the global hydrological model WaterGAP 2.2 (ISI-MIP 2.1) with five state-of-the-art climate forcing input data-sets. While global precipitation over land during 1971–2000 varies between 103 500 and 111 000 km3 yr−1, global river discharge varies between 39 200 and 42 200 km3 yr−1. Temporal trends of global wa- ter balance components are strongly affected by the uncertainty in the climate forcing (except human water abstractions), and there is a need for temporal homogenization of climate forcings (in particular WFD/WFDEI). On about 10–20 % of the global land area, change of river discharge between two consecutive 30 year periods was driven more strongly by changes of human water use including dam construction than by changes in precipitation. This number increases towards the end of the 20th century due to intensified human water use and dam construction. The calibration approach of WaterGAP against observed long-term average river discharge reduces the impact of climate forcing uncertainty on estimated river discharge significantly. Different homgeneous climate forcings lead to a variation of Q of only 1.6 % for the 54 % of global land area that are constrained by discharge observations, while estimated renewable water resources in the remaining uncalibrated regions vary by 18.5 %. Uncertainties are especially high in Southeast Asia where Global Runoff Data Centre (GRDC) data availability is very sparse. By sharing already available discharge data, or installing new streamflow gauging stations in such regions, water balance uncertainties could be reduced which would lead to an improved assessment of the world’s water resources.
The assessment of water balance components using global hydrological models is subject to climate forcing uncertainty as well as to an increasing intensity of human water use within the 20th century. The uncertainty of five state-of-the-art climate forcings and the resulting range of cell runoff that is simulated by the global hydrological model WaterGAP is presented. On the global land surface, about 62 % of precipitation evapotranspires, whereas 38 % discharges into oceans and inland sinks. During 1971–2000, evapotranspiration due to human water use amounted to almost 1 % of precipitation, while this anthropogenic water flow increased by a factor of approximately 5 between 1901 and 2010. Deviation of estimated global discharge from the ensemble mean due to climate forcing uncertainty is approximately 4 %. Precipitation uncertainty is the most important reason for the uncertainty of discharge and evapotranspiration, followed by shortwave downward radiation. At continental levels, deviations of water balance components due to uncertain climate forcing are higher, with the highest discharge deviations occurring for river discharge in Africa (−6 to 11 % from the ensemble mean). Uncertain climate forcings also affect the estimation of irrigation water use and thus the estimated human impact of river discharge. The uncertainty range of global irrigation water consumption amounts to approximately 50 % of the global sum of water consumption in the other water use sector.
Global hydrological models enhance our understanding of the Earth system and support the sustainable management of water, food and energy in a globalized world. They integrate process knowledge with a multitude of model input data (e.g., precipitation, land cover and soil properties and location and extent of surface water bodies) that describe the state of the Earth. However, they do not fully utilize observations of model output
variables (e.g., streamflow and water storage) to decrease model output uncertainty by, e.g., parameter estimation. For the pilot region Mississippi River basin, we assessed the suitability of three ensemble-based multi-variable calibration approaches for identifying both optimal and behavioral parameter sets for the global hydrological model WaterGAP, utilizing observations of streamflow (Q) and total water storage anomaly (TWSA). The
common first steps in all approaches are 1) the definition of spatial units for which calibration parameters are uniformly adjusted (CDA units), combined with the selection of observation data, 2) the identification of potential calibration parameters and their a-priori probability distributions and 3) sensitivity analyses to select the most
influential model parameters per CDA unit that will be adjusted by calibration. In the estimation of model output uncertainty, we considered the uncertainties of the Q and TWSA observations. We found that the Pareto-optimal calibration (POC) approach, which utilizes the Borg multi-objective evolutionary search algorithm to find Pareto30 optimal parameter sets, is best suited for identifying a single “optimal” parameter set for each CDA unit. This parameter set leads to an improved fit to the monthly time series of both Q and TWSA as compared to the standard WaterGAP variant, which is only calibrated against mean annual Q, and can be used to compute the best estimate of WaterGAP output. The Generalized Likelihood Uncertainty Estimation (GLUE) approach is less suitable than POC to identify the optimal parameter set but enables the estimation of model output uncertainties that are due to the equifinality of parameter sets and the observation uncertainty. The potential advantages of the ensemble Kalman filter calibration and data assimilation (EnCDA) approach, in which both parameter sets and water storages are updated, could not be realized, likely due to the high computational burden of this approach, This limited the EnCDA ensemble size to 32, while 20,000 ensemble members could be evaluated in the case of POC and GLUE. Partitioning the whole Mississippi River basin into five CDA units (sub-basins) instead of only one improved model performance during the calibration and validation periods. Very diverse parameter sets were found to lead to similarly good fits to observations, but the range of values of three parameters could be narrowed
by calibration. Model structure uncertainties, in particular regarding the operation of man-made reservoirs, the location and extent of small wetlands, and the (lacking) representation of losing river conditions in WaterGAP, are suspected to be the main reasons for the low coverage of the observation uncertainty bands by the GLUE45 derived model output uncertainty bands. Model structure uncertainties are also the likely reason for major tradeoffs between optimal fit to Q and TWSA. Calibration against GRACE TWSA only, in regions without Q observations, may worsen the Q simulation as compared to the uncalibrated model variant. We plan to add additional remotely-sensed observations in the multi-variable calibration of WaterGAP and suggest considering parameter uncertainty in multi-model ensemble studies of the global freshwater system.