Refine
Document Type
- Article (18)
- Doctoral Thesis (1)
Language
- English (19)
Has Fulltext
- yes (19)
Is part of the Bibliography
- no (19)
Keywords
- uncertainty (2)
- ANOVA (1)
- Australia (1)
- BSRN (1)
- CABLE (1)
- Calibration (1)
- Catchment hydrological models (1)
- Climate change (1)
- Climate data (1)
- Climate sciences (1)
Evaluation of radiation components in a global freshwater model with station-based observations
(2016)
In many hydrological models, the amount of evapotranspired water is calculated using the potential evapotranspiration (PET) approach. The main driver of several PET approaches is net radiation, whose downward components are usually obtained from meteorological input data, whereas the upward components are calculated by the model itself. Thus, uncertainties can be large due to both the input data and model assumptions. In this study, we compare the radiation components of the WaterGAP Global Hydrology Model, driven by two meteorological input datasets and two radiation setups from ERA-Interim reanalysis. We assess the performance with respect to monthly observations provided by the Baseline Surface Radiation Network (BSRN) and the Global Energy Balance Archive (GEBA). The assessment is done for the global land area and specifically for energy/water limited regions. The results indicate that there is no optimal radiation input throughout the model variants, but standard meteorological input datasets perform better than those directly obtained by ERA-Interim reanalysis for the key variable net radiation. The low number of observations for some radiation components, as well as the scale mismatch between station observations and 0.5° × 0.5° grid cell size, limits the assessment.
Global-scale assessments of freshwater fluxes and storages by hydrological models under historic climate conditions are subject to a variety of uncertainties. Using the global hydrological model WaterGAP 2.2, we investigated the sensitivity of simulated freshwater fluxes and water storage variations to five major sources of uncertainty: climate forcing, land cover input, model structure, consideration of human water use and calibration (or no calibration). In a modelling experiment, five variants of the standard version of WaterGAP 2.2 were generated that differed from the standard version only regarding the investigated source of uncertainty. Sensitivity was analyzed by comparing water fluxes and water storage variations computed by the variants to those of the standard version, considering both global averages and grid cell values for the time period 1971–2000. The basin-specific calibration approach for WaterGAP, which forces simulated mean annual river discharge to be equal to observed values at 1319 gauging stations (representing 54% of global land area except Antarctica and Greenland), has the highest effect on modelled water fluxes and leads to the best fit of modelled to observed monthly and seasonal river discharge. Alternative state-of-the-art climate forcings rank second regarding the impact on grid cell specific fluxes and water storage variations, and their impact is ubiquitous and stronger than that of alternative land cover inputs. The diverse model refinements during the last decade lead to an improved fit to observed discharge, and affect globally averaged fluxes and storage values (the latter mainly due to modelling of groundwater depletion) but only affect a relatively small number of grid cells. Considering human water use is important for the global water storage trend (in particular in the groundwater compartment) but impacts on water fluxes are rather local and only important where water use is high. The best fit to observed time series of monthly river discharge (Nash–Sutcliffe criterion) or discharge seasonality is obtained with the standard WaterGAP 2.2 model version which is calibrated and driven by a sequence of two time series of daily observation-based climate forcings, WFD/WFDEI. Discharge computed by a calibrated model version using monthly CRU 3.2 and GPCC v6 climate input reduced the fit to observed discharge for most stations. Taking into account the investigated uncertainties of climate and land cover data, we estimate that the global 1971–2000 discharge into oceans and inland sinks is between 40 000 and 42 000 km3 yr−1. The range is mainly due differences in precipitation data that affect discharge in uncalibrated river basins. Actual evapotranspiration, with approximately 70 000 km3 yr−1, is rather unaffected by climate and land cover in global sum but differs spatially. Human water use is calculated to reduce river discharge by approximately 1000 km3 yr−1. Thus, global renewable water resources are estimated to range between 41 000 and 43 000 km3 yr−1. The climate data sets WFD (available until 2001) and WFDEI (starting in 1979) were found to be inconsistent with respect to short wave radiation data, resulting in strongly different potential evapotranspiration. Global assessments of freshwater fluxes and storages would therefore benefit from the development of a global data set of consistent daily climate forcing from 1900 to current.
The estimation of water balance components as well as water-related indicators on the land surface by means of global hydrological models have evolved in recent decades. Results of such models are frequently used in global- and continental-scale assessments of the current and future state of the terrestrial water cycle and provide a valuable data basis, e.g., for the Intergovernmental Panel on Climate Change. The Water – Global Assessment and Prognosis (WaterGAP) model is one of the state-of-the-art models in that field and has been in development and application for around 20 years. The evaluation, modification and application of WaterGAP is the subject of this thesis. In particular, the sensitivity of climate input data on radiation calculation and simulated water fluxes and storages is evaluated in the first part. Effects of model modification such as updated spatial input datasets, improved process representation or an alternative calibration scheme are the focus of the second part. Finally, three applications of WaterGAP give insight into the capabilities of that model, namely an estimate of global and continental water balance components, an assessment of groundwater depletion and the impact of climate change on river flow regimes. Model experiments, which are described in six journal papers as well as the appendices, were used as the basis for answering the total of 13 research questions. One of the major foci was to quantify the sensitivity of simulated water fluxes and storages to alternative climate input data. It was found that the handling of precipitation undercatch leads to the greatest difference in water balance components, especially in those areas where WaterGAP is not calibrated due to a lack of river discharge observations. The modifications of WaterGAP in the last few decades has led in general to an improved simulation of monthly river discharge, but process representation in semi-arid and arid regions still requires improvements. With the most current model version, WaterGAP 2.2b, and for the time period 1971–2000, river discharge to the oceans and inland sinks is estimated to be 40 000 km3 yr-1, whereas actual evapotranspiration is simulated as 70 500 km3 yr-1. Future research needs for WaterGAP in particular but also for the global hydrological model community in general are defined, promoting a community-driven effort for a robust assessment of the continental water cycle.
Global impact models represent process-level understanding of how natural and human systems may be affected by climate change. Their projections are used in integrated assessments of climate change. Here we test, for the first time, systematically across many important systems, how well such impact models capture the impacts of extreme climate conditions. Using the 2003 European heat wave and drought as a historical analogue for comparable events in the future, we find that a majority of models underestimate the extremeness of impacts in important sectors such as agriculture, terrestrial ecosystems, and heat-related human mortality, while impacts on water resources and hydropower are overestimated in some river basins; and the spread across models is often large. This has important implications for economic assessments of climate change impacts that rely on these models. It also means that societal risks from future extreme events may be greater than previously thought.
Global water models (GWMs) simulate the terrestrial water cycle, on the global scale, and are used to assess the impacts of climate change on freshwater systems. GWMs are developed within different modeling frameworks and consider different underlying hydrological processes, leading to varied model structures. Furthermore, the equations used to describe various processes take different forms and are generally accessible only from within the individual model codes. These factors have hindered a holistic and detailed understanding of how different models operate, yet such an understanding is crucial for explaining the results of model evaluation studies, understanding inter-model differences in their simulations, and identifying areas for future model development. This study provides a comprehensive overview of how state-of-the-art GWMs are designed. We analyze water storage compartments, water flows, and human water use sectors included in 16 GWMs that provide simulations for the Inter-Sectoral Impact Model Intercomparison Project phase 2b (ISIMIP2b). We develop a standard writing style for the model equations to further enhance model improvement, intercomparison, and communication. In this study, WaterGAP2 used the highest number of water storage compartments, 11, and CWatM used 10 compartments. Seven models used six compartments, while three models (JULES-W1, Mac-PDM.20, and VIC) used the lowest number, three compartments. WaterGAP2 simulates five human water use sectors, while four models (CLM4.5, CLM5.0, LPJmL, and MPIHM) simulate only water used by humans for the irrigation sector. We conclude that even though hydrologic processes are often based on similar equations, in the end, these equations have been adjusted or have used different values for specific parameters or specific variables. Our results highlight that the predictive uncertainty of GWMs can be reduced through improvements of the existing hydrologic processes, implementation of new processes in the models, and high-quality input data.
Global water models (GWMs) simulate the terrestrial water cycle on the global scale and are used to assess the impacts of climate change on freshwater systems. GWMs are developed within different modelling frameworks and consider different underlying hydrological processes, leading to varied model structures. Furthermore, the equations used to describe various processes take different forms and are generally accessible only from within the individual model codes. These factors have hindered a holistic and detailed understanding of how different models operate, yet such an understanding is crucial for explaining the results of model evaluation studies, understanding inter-model differences in their simulations, and identifying areas for future model development. This study provides a comprehensive overview of how 16 state-of-the-art GWMs are designed. We analyse water storage compartments, water flows, and human water use sectors included in models that provide simulations for the Inter-Sectoral Impact Model Intercomparison Project phase 2b (ISIMIP2b). We develop a standard writing style for the model equations to enhance model intercomparison, improvement, and communication. In this study, WaterGAP2 used the highest number of water storage compartments, 11, and CWatM used 10 compartments. Six models used six compartments, while four models (DBH, JULES-W1, Mac-PDM.20, and VIC) used the lowest number, three compartments. WaterGAP2 simulates five human water use sectors, while four models (CLM4.5, CLM5.0, LPJmL, and MPI-HM) simulate only water for the irrigation sector. We conclude that, even though hydrological processes are often based on similar equations for various processes, in the end these equations have been adjusted or models have used different values for specific parameters or specific variables. The similarities and differences found among the models analysed in this study are expected to enable us to reduce the uncertainty in multi-model ensembles, improve existing hydrological processes, and integrate new processes.
We performed an intercomparison of river discharge regulated by dams under four meteorological forcings among five global hydrological models for a historical period by simulation. This is the first global multimodel intercomparison study on dam-regulated river flow. Although the simulations were conducted globally, the Missouri–Mississippi and Green–Colorado Rivers were chosen as case-study sites in this study. The hydrological models incorporate generic schemes of dam operation, not specific to a certain dam. We examined river discharge on a longitudinal section of river channels to investigate the effects of dams on simulated discharge, especially at the seasonal time scale. We found that the magnitude of dam regulation differed considerably among the hydrological models. The difference was attributable not only to dam operation schemes but also to the magnitude of simulated river discharge flowing into dams. That is, although a similar algorithm of dam operation schemes was incorporated in different hydrological models, the magnitude of dam regulation substantially differed among the models. Intermodel discrepancies tended to decrease toward the lower reaches of these river basins, which means model dependence is less significant toward lower reaches. These case-study results imply that, intermodel comparisons of river discharge should be made at different locations along the river's course to critically examine the performance of hydrological models because the performance can vary with the locations.
Over recent decades, the global population has been rapidly increasing and human activities have altered terrestrial water fluxes to an unprecedented extent. The phenomenal growth of the human footprint has significantly modified hydrological processes in various ways (e.g. irrigation, artificial dams, and water diversion) and at various scales (from a watershed to the globe). During the early 1990s, awareness of the potential for increased water scarcity led to the first detailed global water resource assessments. Shortly thereafter, in order to analyse the human perturbation on terrestrial water resources, the first generation of large-scale hydrological models (LHMs) was produced. However, at this early stage few models considered the interaction between terrestrial water fluxes and human activities, including water use and reservoir regulation, and even fewer models distinguished water use from surface water and groundwater resources. Since the early 2000s, a growing number of LHMs have incorporated human impacts on the hydrological cycle, yet the representation of human activities in hydrological models remains challenging. In this paper we provide a synthesis of progress in the development and application of human impact modelling in LHMs. We highlight a number of key challenges and discuss possible improvements in order to better represent the human–water interface in hydrological models.
Land surface and hydrologic models (LSMs/HMs) are used at diverse spatial resolutions ranging from catchment-scale (1–10 km) to global-scale (over 50 km) applications. Applying the same model structure at different spatial scales requires that the model estimates similar fluxes independent of the chosen resolution, i.e., fulfills a flux-matching condition across scales. An analysis of state-of-the-art LSMs and HMs reveals that most do not have consistent hydrologic parameter fields. Multiple experiments with the mHM, Noah-MP, PCR-GLOBWB, and WaterGAP models demonstrate the pitfalls of deficient parameterization practices currently used in most operational models, which are insufficient to satisfy the flux-matching condition. These examples demonstrate that J. Dooge's 1982 statement on the unsolved problem of parameterization in these models remains true. Based on a review of existing parameter regionalization techniques, we postulate that the multiscale parameter regionalization (MPR) technique offers a practical and robust method that provides consistent (seamless) parameter and flux fields across scales. Herein, we develop a general model protocol to describe how MPR can be applied to a particular model and present an example application using the PCR-GLOBWB model. Finally, we discuss potential advantages and limitations of MPR in obtaining the seamless prediction of hydrological fluxes and states across spatial scales.
Land surface and hydrologic models (LSM/HM) are used at diverse spatial resolutions ranging from 1-10 km in catchment-scale applications to over 50 km in global-scale applications. Application of the same model structure at different spatial scales requires that the model estimates similar fluxes independent of the model resolution and fulfills a flux-matching condition across scales. An analysis of state-of-the-art LSMs and HMs reveals that most do not have consistent and realistic parameter fields for land surface geophysical properties. Multiple experiments with the mHM, Noah-MP, PCR-GLOBWB and WaterGAP models are conducted to demonstrate the pitfalls of poor parameterization practices currently used in most operational models, which are insufficient to satisfy the flux-matching condition. These examples demonstrate that J. Dooge’s 1982 statement on the unsolved problem of parameterization in these models remains true. We provide a short review of existing parameter regionalization techniques and discuss a method for obtaining seamless hydrological predictions of water fluxes and states across multiple spatial resolutions. The multiscale parameter regionalization (MPR) technique is a practical and robust method that provides consistent (seamless) parameter and flux fields across scales. A general model protocol is presented to describe how MPR can be applied to a specific model, with an example of this application using the PCR-GLOBWB model. Applying MPR to PCR-GLOBWB substantially improves the flux-matching condition. Estimation of evapotranspiration without MPR at 5 arcmin and 30 arcmin spatial resolutions for the Rhine river basin results in a difference of approximately 29%. Applying MPR reduce this difference to 9%. For total soil water, the differences without and with MPR are 25% and 7%, respectively.