Refine
Language
- English (7)
Has Fulltext
- yes (7)
Is part of the Bibliography
- no (7)
Keywords
- Adaptive sequence evolution (1)
- Chironomus piger (1)
- Chironomus riparius (1)
- McDonald-Kreitman test (1)
- MinION (1)
- Positive selection (1)
- assembly (1)
- cuticular hydrocarbons (1)
- desaturase (1)
- elongase (1)
Active transposable elements (TEs) may result in divergent genomic insertion and abundance patterns among conspecific populations. Upon secondary contact, such divergent genetic backgrounds can theoretically give rise to classical Dobzhansky-Muller incompatibilities (DMI), a way how TEs can contribute to the evolution of endogenous genetic barriers and eventually population divergence. We investigated whether differential TE activity created endogenous selection pressures among conspecific populations of the non-biting midge Chironomus riparius, focussing on a Chironomus-specific TE, the minisatellite-like Cla-element, whose activity is associated with speciation in the genus. Using an improved and annotated draft genome for a genomic study with five natural C. riparius populations, we found highly population-specific TE insertion patterns with many private insertions. A highly significant correlation of pairwise population FST from genome-wide SNPs with the FST estimated from TEs suggests drift as the major force driving TE population differentiation. However, the significantly higher Cla-element FST level due to a high proportion of differentially fixed Cla-element insertions indicates that segregating, i.e. heterozygous insertions are selected against. With reciprocal crossing experiments and fluorescent in-situ hybridisation of Cla-elements to polytene chromosomes, we documented phenotypic effects on female fertility and chromosomal mispairings that might be linked to DMI in hybrids. We propose that the inferred negative selection on heterozygous Cla-element insertions causes endogenous genetic barriers and therefore acts as DMI among C. riparius populations. The intrinsic genomic turnover exerted by TEs, thus, may have a direct impact on population divergence that is operationally different from drift and local adaptation.
The gradual heterogeneity of climatic factors pose varying selection pressures across geographic distances that leave signatures of clinal variation in the genome. Separating signatures of clinal adaptation from signatures of other evolutionary forces, such as demographic processes, genetic drift, and adaptation to non-clinal conditions of the immediate local environment is a major challenge. Here, we examine climate adaptation in five natural populations of the harlequin fly Chironomus riparius sampled along a climatic gradient across Europe. Our study integrates experimental data, individual genome resequencing, Pool-Seq data, and population genetic modelling. Common-garden experiments revealed a positive correlation of population growth rates corresponding to the population origin along the climate gradient, suggesting thermal adaptation on the phenotypic level. Based on a population genomic analysis, we derived empirical estimates of historical demography and migration. We used an FST outlier approach to infer positive selection across the climate gradient, in combination with an environmental association analysis. In total we identified 162 candidate genes as genomic basis of climate adaptation. Enriched functions among these candidate genes involved the apoptotic process and molecular response to heat, as well as functions identified in other studies of climate adaptation in other insects. Our results show that local climate conditions impose strong selection pressures and lead to genomic adaptation despite strong gene flow. Moreover, these results imply that selection to different climatic conditions seems to converge on a functional level, at least between different insect species.
Molluscs are the second most species-rich phylum in the animal kingdom, yet only 11 genomes of this group have been published so far. Here, we present the draft genome sequence of the pulmonate freshwater snail Radix auricularia. Six whole genome shotgun libraries with different layouts were sequenced. The resulting assembly comprises 4,823 scaffolds with a cumulative length of 910 Mb and an overall read coverage of 72×. The assembly contains 94.6% of a metazoan core gene collection, indicating an almost complete coverage of the coding fraction. The discrepancy of ∼690 Mb compared with the estimated genome size of R. auricularia (1.6 Gb) results from a high repeat content of 70% mainly comprising DNA transposons. The annotation of 17,338 protein coding genes was supported by the use of publicly available transcriptome data. This draft will serve as starting point for further genomic and population genetic research in this scientifically important phylum.
Molluscs are the second most species-rich phylum in the animal kingdom, yet only eleven genomes of this group have been published so far. Here, we present the draft genome sequence of the pulmonate freshwater snail Radix auricularia. Six whole genome shotgun libraries with different layouts were sequenced. The resulting assembly comprises 4,823 scaffolds with a cumulative length of 910 Mb and an overall read coverage of 72x. The assembly contains 94.6 % of a metazoan core gene collection, indicating an almost complete coverage of the coding fraction. The discrepancy of ~690 Mb compared to the estimated genome size of R. auricularia (1.6 Gb) results from a high repeat content of 70 % mainly comprising DNA transposons. The annotation of 17,338 protein coding genes was supported by the use of publicly-available transcriptome data. This draft will serve as starting point for further genomic and population genetic research in this scientifically important phylum.
Gene-modified autologous hematopoietic stem cells (HSC) can provide ample clinical benefits to subjects suffering from X-linked chronic granulomatous disease (X-CGD), a rare inherited immunodeficiency characterized by recurrent, often life-threatening bacterial and fungal infections. Here we report on the molecular and cellular events observed in two young adults with X-CGD treated by gene therapy in 2004. After the initial resolution of bacterial and fungal infections, both subjects showed silencing of transgene expression due to methylation of the viral promoter, and myelodysplasia with monosomy 7 as a result of insertional activation of ecotropic viral integration site 1 (EVI1). One subject died from overwhelming sepsis 27 months after gene therapy, whereas a second subject underwent an allogeneic HSC transplantation. Our data show that forced overexpression of EVI1 in human cells disrupts normal centrosome duplication, linking EVI1 activation to the development of genomic instability, monosomy 7 and clonal progression toward myelodysplasia.
The success of social insects is largely intertwined with their highly advanced chemical communication system that facilitates recognition and discrimination of species and nest-mates, recruitment, and division of labor. Hydrocarbons, which cover the cuticle of insects, not only serve as waterproofing agents but also constitute a major component of this communication system. Two cryptic Crematogaster species, which share their nest with Camponotus ants, show striking diversity in their cuticular hydrocarbon (CHC) profile. This mutualistic system therefore offers a great opportunity to study the genetic basis of CHC divergence between sister species. As a basis for further genome-wide studies high-quality genomes are needed. Here, we present the annotated draft genome for Crematogaster levior A. By combining the three most commonly used sequencing techniques—Illumina, PacBio, and Oxford Nanopore—we constructed a high-quality de novo ant genome. We show that even low coverage of long reads can add significantly to overall genome contiguity. Annotation of desaturase and elongase genes, which play a role in CHC biosynthesis revealed one of the largest repertoires in ants and a higher number of desaturases in general than in other Hymenoptera. This may provide a mechanistic explanation for the high diversity observed in C. levior CHC profiles.
Genomic basis of ecological niche divergence among cryptic sister species of non-biting midges
(2013)
Background: There is a lack of understanding the evolutionary forces driving niche segregation of closely related organisms. In addition, pinpointing the genes driving ecological divergence is a key goal in molecular ecology. Here, larval transcriptome sequences obtained by next-generation-sequencing are used to address these issues in a morphologically cryptic sister species pair of non-biting midges (Chironomus riparius and C. piger).
Results: More than eight thousand orthologous open reading frames were screened for interspecific divergence and intraspecific polymorphisms. Despite a small mean sequence divergence of 1.53% between the sister species, 25.1% of 18,115 observed amino acid substitutions were inferred by α statistics to be driven by positive selection. Applying McDonald-Kreitman tests to 715 alignments of gene orthologues identified eleven (1.5%) genes driven by positive selection.
Conclusions: Three candidate genes were identified as potentially responsible for the observed niche segregation concerning nitrite concentration, habitat temperature and water conductivity. Additionally, signs of positive selection in the hydrogen sulfide detoxification pathway were detected, providing a new plausible hypothesis for the species’ ecological differentiation. Finally, a divergently selected, nuclear encoded mitochondrial ribosomal protein may contribute to reproductive isolation due to cytonuclear coevolution.