Refine
Year of publication
Language
- English (19)
Has Fulltext
- yes (19)
Is part of the Bibliography
- no (19)
Keywords
Two-particle correlation functions of negative hadrons over wide phase space, and transverse mass spectra of negative hadrons and deuterons near mid-rapidity have been measured in central Pb+Pb collisions at 158 GeV per nucleon by the NA49 experiment at the CERN SPS. A novel Coulomb correction procedure for the negative two-particle correlations is employed making use of the measured oppositely charged particle correlation. Within an expanding source scenario these results are used to extract the dynamic characteristics of the hadronic source, resolving the ambiguities between the temperature and transverse expansion velocity of the source, that are unavoidable when single and two particle spectra are analysed separately. The source shape, the total duration of the source expansion, the duration of particle emission, the freeze-out temperature and the longitudinal and transverse expansion velocities are deduced.
We report measurements of Xi and Xi-bar hyperon absolute yields as a function of rapidity in 158 GeV/c Pb+Pb collisions. At midrapidity, dN/dy = 2.29 +/- 0.12 for Xi, and 0.52 +/- 0.05 for Xi-bar, leading to the ratio of Xi-bar/Xi = 0.23 +/- 0.03. Inverse slope parameters fitted to the measured transverse mass spectra are of the order of 300 MeV near mid-rapidity. The estimated total yield of Xi particles in Pb+Pb central interactions amounts to 7.4 +/- 1.0 per collision. Comparison to Xi production in properly scaled p+p reactions at the same energy reveals a dramatic enhancement (about one order of magnitude) of Xi production in Pb+Pb central collisions over elementary hadron interactions.
The directed and elliptic flow of protons and charged pions has been observed from the semi-central collisions of a 158 GeV/nucleon Pb beam with a Pb target. The rapidity and transverse momentum dependence of the flow has been measured. The directed flow of the pions is opposite to that of the protons but both exhibit negative flow at low pt. The elliptic flow of both is fairly independent of rapidity but rises with pt. PACS numbers: 25.75.-q, 25.75.Ld
Using the NA49 main TPC, the central production of hyperons has been measured in CERN SPS Pb - Pb collisions at 158 GeV c-1. The preliminary ratio, studied at 2.0 < y < 2.6 and 1 < pT < 3 GeV c-1, equals ~ (13 ± 4)% (systematic error only). It is compatible, within errors, with the previously obtained ratios for central S + S [1], S + W [2], and S + Au [3] collisions. The fit to the transverse momentum distribution resulted in an inverse slope parameter T of 297 MeV. At this level of statistics we do not see any noticeable enhancement of hyperon production with the increased volume (and, possibly, degree of equilibration) of the system from S + S to Pb + Pb. This result is unexpected and counterintuitive, and should be further investigated. If confirmed, it will have a significant impact on our understanding of mechanisms leading to the enhanced strangeness production in heavy-ion collisions.
Preliminary data on phi production in central Pb + Pb collisions at 158 GeV per nucleon are presented, measured by the NA49 experiment in the hadronic decay channel phi - K+K-. At mid-rapidity, the kaons were separated from pions and protons by combining dE/dx and time-of-flight information; in the forward rapidity range only dE/dx identification was used to obtain the rapidity distribution and a rapidity-integrated mt-spectrum. The mid-rapidity yield obtained was dN/dy = 1.85 ± 0.3 per event; the total phi multiplicity was estimated to be 5.0 ± 0.7 per event. Comparison with published pp data shows a slight, but not very significant strangeness enhancement.
The large acceptance TPCs of the NA49 spectrometer allow for a systematic multidimensional study of two-particle correlations in different part of phase space. Results from Bertsch-Pratt and Yano-Koonin-Podgoretskii parametrizations are presented differentially in transverse pair momentum and pair rapidity. These studies give an insight into the dynamical space-time evolution of relativistic Pb+Pb collisions, which is dominated by longitudinal expansion.
Lambda and Antilambda reconstruction in central Pb+Pb collisions using a time projection chamber
(1997)
The large acceptance time projection chambers of the NA49 experiment are used to record the trajectory of charged particles from Pb + Pb collisions at 158 GeV per nucleon. Neutral strange hadrons have been reconstructed from their charged decay products. To obtain distributions of Λ, and Ks0 in discrete bins of rapidity, y, and transverse momentum, pT, calculations have been performed to determine the acceptance of the detector and the efficiency of the reconstruction software as a function of both variables. The lifetime distributions obtained give values of cτ = 7.8 ± 0.6 cm for Λ and cτ = 2.5 ± 0.3 cm for Ks0, consistent with data book values.
We present the first measurement of fluctuations from event to event in the production of strange particles in collisions of heavy nuclei. The ratio of charged kaons to charged pions is determined for individual central Pb+Pb collisions. After accounting for the fluctuations due to detector resolution and finite number statistics we derive an upper limit on genuine non-statistical fluctuations, perhaps related to a first or second order QCD phase transition. Such fluctuations are shown to be very small.
New results from the energy scan programme of NA49, in particular kaon production at 30 AGeV and phi production at 40 and 80 AGeV are presented. The K+/pi+ ratio shows a pronounced maximum at 30 AGeV; the kaon slope parameters are constant at SPS energies. Both findings support the scenario of a phase transition at about 30 AGeV beam energy. The phi/pi ratio increases smoothly with beam energy, showing an energy dependence similar to K-/pi-. The measured particle yields can be reproduced by a hadron gas model, with chemical freeze-out parameters on a smooth curve in the T-muB plane. The transverse spectra can be understood as resulting from a rapidly expanding, locally equilibrated source. No evidence for an earlier kinetic decoupling of heavy hyperons is found.