Refine
Document Type
- Article (8)
Language
- English (8)
Has Fulltext
- yes (8)
Is part of the Bibliography
- no (8)
Institute
- Physik (8)
Proton emission in relativistic nuclear collisions is examined for events of low and high multiplicity, corresponding to large and small impact parameters. Peripheral reactions exhibit distributions of protons in agreement with spectator-participant decay modes. Central collisions of equal-size nuclei are dominated by the formation and decay of a fireball system. Central collisions of light projectiles with heavy targets exhibit an enhancement in sideward emission which is predicted by recent hydrodynamical calculations.
Inclusive energy spectra of protons, deuterons, and tritons were measured with a telescope of silicon and germanium detectors with a detection range for proton energies up to 200 MeV. Fifteen sets of data were taken using projectiles ranging from protons to 40Ar on targets from 27Al to 238U at bombarding energies from 240 MeV/nucleon to 2.1 GeV/nucleon. Particular attention was paid to the absolute normalization of the cross sections. For three previously reported reactions, He fragment cross sections have been corrected and are presented. To facilitate a comparison with theory the sum of nucleonic charges emitted as protons plus composite particles was estimated and is presented as a function of fragment energy per nucleon in the interval from 15 to 200 MeV/nucleon. For low-energy fragments at forward angles the protons account for only 25% of the nucleonic charges. The equal mass 40Ar plus Ca systems were examined in the center of mass. Here at 0.4 GeV/nucleon 40Ar plus Ca the proton spectra appear to be nearly isotropic in the center of mass over the region measured. Comparisons of some data with firestreak, cascade, and fluid dynamics models indicate a failure of the first and a fair agreement with the latter two. In addition, associated fast charged particle multiplicities (where the particles had energies larger than 25 MeV/nucleon) and azimuthal correlations were measured with an 80 counter array of plastic scintillators. It was found that the associated multiplicities were a smooth function of the total kinetic energy of the projectile. NUCLEAR REACTIONS U(20Ne,X), E / A=240 MeV/nucleon; U(40Ar,X), Ca(40Ar,X), U(20Ne,X), Au(20Ne,X), Ag(20Ne,X), Al(20Ne,X), U(4He,X), Al(4He,X), E / A=390 MeV/nucleon; U(40Ar,X), Ca(40Ar,X), U(20Ne,X), U(4He,X), U(p,X), E / A=1.04 GeV/nucleon; U(20Ne,X), E / A=2.1 GeV/nucleon; measured sigma (E, theta ), X=p,d,t.
Pion-production cross sections have been measured for the reaction 40Ar+40Ca--> pi ++X at a laboratory energy of 1.05 GeV/nucleon. A maximum in the pi + cross section occurs at mid-rapidity, which is anomalous relative to p+p and p+nucleus reactions and compared to many other heavy-ion reactions. Calculations based on cascade and thermal models fail to fit the data.
A simple model is proposed for the emission of nucleons with velocities intermediate between those of the target and projectile. In this model, the nucleons which are mutually swept out from the target and projectile form a hot quasiequilibrated fireball which decays as an ideal gas. The overall features of the proton-inclusive spectra from 250- and 400-MeV/nucleon 20Ne ions and 400-MeV/nucleon 4He ions interacting with uranium are fitted without any adjustable parameters.
Energy spectra and angular distributions have been measured of 3He and 4He fragments emitted from Ag and U targets, bombarded with 2.7-GeV protons, and 1.05-GeV/nucleon alpha particles and 16O ions. All cross sections increase dramatically with projectile mass. No narrow peaks are found in the angular distributions or in the energy spectra.
Pion production and charged-particle multiplicity selection in relativistic nuclear collisions
(1982)
Spectra of positive pions with energies of 15-95 MeV were measured for high energy proton, 4He, 20Ne, and 40Ar bombardments of targets of 27Al, 40Ca, 107,109Ag, 197Au, and 238U. A Si-Ge telescope was used to identify charged pions by dE / dx-E and, in addition, stopped pi + were tagged by the subsequent muon decay. In all, results for 14 target-projectile combinations are presented to study the dependence of pion emission patterns on the bombarding energy (from E / A=0.25 to 2.1 GeV) and on the target and the projectile masses. In addition, associated charged-particle multiplicities were measured in an 80-paddle array of plastic scintillators, and used to make impact parameter selections on the pion-inclusive data. NUCLEAR REACTIONS U(20Ne, pi +), E / A=250 MeV; U(40Ar, pi +), Ca(40Ar, pi +), U(20Ne, pi +), Au(20Ne, pi +), Ag(20Ne, pi +), Al(20Ne, pi +), U(4He, pi +), Al(4He, pi +). E / A=400 MeV; Ca(40Ar, pi +), U(20Ne, pi +), U(4He, pi +), U(p, pi +), E / A=1.05), GeV; U(20Ne, pi +), E / A=2.1 GeV; measured sigma (E, theta ), inclusive and selected on associated charged-particle multiplicity.
The energy spectra of protons and light nuclei produced by the interaction of 4He and 20Ne projectiles with Al and U targets have been investigated at incident energies ranging from 0.25 to 2.1 GeV per nucleon. Single fragment inclusive spectra have been obtained at angles between 25° and 150°, in the energy range from 30 to 150 MeV/nucleon. The multiplicity of intermediate and high energy charged particles was determined in coincidence with the measured fragments. In a separate study, fragment spectra were obtained in the evaporation energy range from 12C and 20Ne bombardment of uranium. We observe structureless, exponentially decaying spectra throughout the range of studied fragment masses. There is evidence for two major classes of fragments; one with emission at intermediate temperature from a system moving slowly in the lab frame, and the other with high temperature emission from a system propagating at a velocity intermediate between target and projectile. The high energy proton spectra are fairly well reproduced by a nuclear fireball model based on simple geometrical, kinematical, and statistical assumptions. Light cluster emission is also discussed in the framework of statistical models. NUCLEAR REACTIONS U(20Ne,X), E=250 MeV/nucl.; U(20Ne,X), U(α,X) E=400 MeV/nucl.; U(20Ne,X), Al(20Ne,X), E=2.1 GeV/nucl.; measured σ(E,θ), X=p, d, t, 3He,4He. U(20Ne,X), U(α,X), E=400 MeV/nucl.; U(20Ne,X), E=2.1 GeV/nucl.; measured σ(E, θ), Li to O. U(20Ne,X), U(12C,X), E=2.1 GeV/nucl.; measured σ(E, 90°), 4He to B. Nuclear fireballs, coalescence, thermodynamics of light nuclei production.
Double-differential cross sections have been measured for high-energy p, d, t, 3He, and 4He particles emitted from uranium targets irradiated with 20Ne ions at energies of 250, 400, and 2100 MeV/nucleon and 4He ions at 400 MeV/nucleon. By using the shape and yield of the proton energy spectra, the shape and yield of the d, t, 3He, and 4He energy spectra can be deduced at all measured angles for all incident projectile energies by assuming that they are formed by a coalescence of cascade nucleons, using a model analogous to that of Butler and Pearson, and Schwarzschild and Zupancic-caron.