Refine
Document Type
- Article (7)
- Conference Proceeding (4)
- Working Paper (3)
- Report (1)
Has Fulltext
- yes (15)
Is part of the Bibliography
- no (15)
Institute
- Physik (15)
A new method for the determination of S-matrices of devices in multimoded waveguides and first experimental experiences are presented. The theoretical foundations are given. The scattering matrix of a TESLA copper cavity at a frequency above the cut-off of the second waveguide mode has been measured.
Accelerating cavities exchange HOM power through interconnecting beam pipes in case of signal frequencies above the cut-off of their propagating waveguide modes. This may lead either to improved HOM damping or - in the case most severe - to unwanted phase coherence of fields to the beam. Therefore the knowledge of the scattering properties of a cavity as a line element is needed to analyse all kinds of RF cavity-cavity interaction. Since there is a lack of measurement tools capable to provide a multidimensional scattering matrix at a given frequency point, we have been developing a method for this purpose. It uses a set of 2-port S-parameters of the device under test, embedded in a number of geometrically different RF environments. The application of the method is demonstrated with copper models of TESLA cavities.
The effect of a single HOM-damper cell within a channel of undamped cells is described theoretically using an equivalent circuit model. From this a simple equation can be derived which relates the Q-value of the single damping-cell, the bandwidth of the passband under consideration, and the additional phase shift which is introduced by the damper cell to provide energy flow into the damper cell. This equation immediately shows the limitations of such single cell damping systems. Comparisons with experimental results are shown.
By replacing the irises in an electron linac by a slit one gets a structure capable of focussing/defocussing an electron beam (rf-quadrupoles). Therefore one can think of a combination of rf- and conventional magnetic quadrupoles for transversal focussing in linear-colliders. Furthermore they can meet the demands of BNS-damping without initial energy spread. Considering multibunch-operation of a collider, the long-range wake behaviour of this kind of structure has to be investigated. A three-cell structure has been built and investigated for dipole-type transversal long-range wakes. The experimental results are compared to numerical simulations done with MAFIA.
Damping cells for the higher order modes are necessary for the S-band linear collider to minimize BBU (Beam-Break-Up). The construction of the damper cells has to take into account the different field geometries of the higher order modes. So two different types of dampers have been designed: a wall slotted an an iris slotted cell. In order to optimize the two types of damping cells with respect to damping strength, impedance matching between coupling system and waveguide dampers and between damping cell and undamped cells and the tuning system, damping cells of both types have been built and examinated.
A new method for measuring quality factors in cavities is presented. This method is capable of measuring Q-factors in heavily damped as well as in undamped cavities. In addition, the possibility of separating overlapping modes and measuring their Q-factors is provided. Measurements on HOM (higher order mode) damped cavities for the DESY/THD linear collider project are presented
A new method of measuring quality factors in cavities is presented. This method is well suited to measure quality factors in undamped cavities as well as in heavily damped cavities, and in addition this method provides a possibility of separating modes and measuring quality factors especially in cases of overlapping modes. Measurements have been carried out on HOM-damped cavities for the DESY/THD linear collider project. Results are presented.