Refine
Document Type
- Article (4)
Language
- German (4)
Has Fulltext
- yes (4)
Is part of the Bibliography
- no (4)
Keywords
- Antimony Methyl Halides (1)
- Contact Ion Pairs (1)
- ENDOR and Triple Spectra (1)
- ESR (1)
- Electronic Structures (1)
- MO Models (1)
- Nitrogen (1)
- PE Assignment (1)
- Phosphorus (1)
- Photoelectron (1)
Institute
The structurally different radical anions M⊖ of peralkylated 1-sila-2,5-diazacyclopentane-3,4-dithione and of tetrakis(isopropylthio)-p-benzoquinone are generated by reduction with potassium/2.2.2-cryptand under aprotic conditions in THF solution. On addition of Li⊕B(C6H5)4⊖, both form hitherto elusive sulfur-containing contact ion pairs, which are characterized by their ESR/ENDOR spectra.
The He I photoelectron spectra of certain MeEHal2 and Me2EHal compounds (E = (N), P, As, Sb; Hal = (F), Cl, Br, J; Me = CH3) are interpreted in terms of a “composite molecule” approach derived for C3vCs systems. Although an “internal standard” is missing here, substituent group-orbitals (nHal, C—H) may be classified with respect to their orientations in space (R, V, T). Ionisation energies are assigned according to this assumption.
PE data of the isoelectronic EMe3/EHal3 compounds and of related molecules (Me2EH, MePH2, CF3PBr2) as well as EHMO calculations with partial inclusion of spin orbit coupling are used to confirm the assignments given for Me2EHal/MeEHal2 series.
Correlations between PE ionisation energies (e.g. nE (IE)) and molecular or atomic properties are critically revised and discussed.
Biacetylbis(methylimine) (1) is obtained by formic acid catalyzed condensation of biacetyl and methylamine. Photoelectron- and UV spectra, H NMR and 13C NMR data are compared with those of the new compound biacetylbis(isopropylimine) (2) and glyoxalbis(isopropylimine) (3).
The He I photoelectron spectra of the series RnP(CN)3-n (R = Me, CF3; n = 0, 1, 2, 3) and of Me2ECN (E = N, P, As) are interpreted. The PE assignments are based on the comparison with the PE data of analogous halogeno and hydrogen derivatives as well as related cyano compounds and on simple MO considerations (composite molecule-approach). Hyperconjugative and inductive effects of the substituents CN, Me, F, Cl, and especially CF3 are assessed. The various effects of changing substituents or central atoms within the series are used to confirm the interpretation. The differing electronic structures of halogeno and cyano (pseudohalogeno) compounds are discussed on the basis of their PE spectra.