Refine
Document Type
- Article (3)
Language
- English (3)
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Keywords
- 124Sn (1)
- 48Ca (1)
- Atomic nuclei (1)
- Collective quadrupole excitations (1)
- Isospin character (1)
- Low-lying electric dipole excitations (1)
- Pygmy quadrupole resonance (1)
Institute
We present an extensive experimental study of the recently predicted pygmy quadrupole resonance (PQR) in Sn isotopes, where complementary probes were used. In this study, (α,α' γ ) and (γ , γ') experiments were performed on 124Sn. In both reactions, Jπ = 2+ states below an excitation energy of 5 MeV were populated. The E2 strength integrated over the full transition densities could be extracted from the (γ , γ') experiment, while the (α,α'γ ) experiment at the chosen kinematics strongly favors the excitation of surface modes because of the strong α-particle absorption in the nuclear interior. The excitation of such modes is in accordance with the quadrupole-type oscillation of the neutron skin predicted by a microscopic approach based on self-consistent density functional theory and the quasiparticle-phonon model (QPM). The newly determined γ -decay branching ratios hint at a non-statistical character of the E2 strength, as it has also been recently pointed out for the case of the pygmy dipole resonance (PDR). This allows us to distinguish between PQR-type and multiphonon excitations and, consequently, supports the recent first experimental indications of a PQR in 124Sn.
Two different experimental approaches were combined to study the electric dipole strength in the doubly-magic nucleus 48Ca below the neutron threshold. Real-photon scattering experiments using bremsstrahlung up to 9.9 MeV and nearly mono-energetic linearly polarized photons with energies between 6.6 and 9.51 MeV provided strength distribution and parities, and an (α,α' γ) experiment at Eα = 136 MeV gave cross sections for an isoscalar probe. The unexpected difference observed in the dipole response is compared to calculations using the first-order random-phase approximation and points to an energy-dependent isospin character. A strong isoscalar state at 7.6 MeV was identified for the first time supporting a recent theoretical prediction.
The complementary (γ, γ′) and (α, α′γ) reactions were used to study the isospin properties of low-lying E1 excitations in the doubly-magic nucleus 48Ca. In contrast to heavier nuclei, a state-to-state change in isospin character was revealed in 48Ca and a dominant isoscalar excitation was found which is interpreted as an isoscalar oscillation. Recently, protons at 80 MeV were used as an additional hadronic probe in a p-γ coincidence experiment on 140Ce for the first time. Results of the experiments on 48Ca and first results of the 140Ce will be presented in this contribution.