Refine
Year of publication
Language
- English (23)
Has Fulltext
- yes (23)
Is part of the Bibliography
- no (23)
Keywords
- EEG (2)
- EEG microstates (2)
- EEG-fMRI (2)
- Non-REM sleep (2)
- entropy (2)
- information theory (2)
- mutual information (2)
- resting state (2)
- Alpha oscillations (1)
- Cognitive neuroscience (1)
Institute
A precise definition of a brain state has proven elusive. Here, we introduce the novel local-global concept of intrinsic ignition characterizing the dynamical complexity of different brain states. Naturally occurring intrinsic ignition events reflect the capability of a given brain area to propagate neuronal activity to other regions, giving rise to different levels of integration. The ignitory capability of brain regions is computed by the elicited level of integration for each intrinsic ignition event in each brain region, averaged over all events. This intrinsic ignition method is shown to clearly distinguish human neuroimaging data of two fundamental brain states (wakefulness and deep sleep). Importantly, whole-brain computational modelling of this data shows that at the optimal working point is found where there is maximal variability of the intrinsic ignition across brain regions. Thus, combining whole brain models with intrinsic ignition can provide novel insights into underlying mechanisms of brain states.
The study of large-scale functional interactions in the human brain with functional magnetic resonance imaging (fMRI) extends almost to the first applications of this technology. Due to historical reasons and preconceptions about the limitations of this brain imaging method, most studies have focused on assessing connectivity over extended periods of time. It is now clear that fMRI can resolve the temporal dynamics of functional connectivity, like other faster imaging techniques such as electroencephalography and magnetoencephalography (albeit on a different temporal scale). However, the indirect nature of fMRI measurements can hinder the interpretability of the results. After briefly summarizing recent advances in the field, we discuss how the simultaneous combination of fMRI with electrophysiological activity measurements can contribute to a better understanding of dynamic functional connectivity in humans both during rest and task, wakefulness, and other brain states.
Discovery of key whole-brain transitions and dynamics during human wakefulness and non-REM sleep
(2019)
The modern understanding of sleep is based on the classification of sleep into stages defined by their electroencephalography (EEG) signatures, but the underlying brain dynamics remain unclear. Here we aimed to move significantly beyond the current state-of-the-art description of sleep, and in particular to characterise the spatiotemporal complexity of whole-brain networks and state transitions during sleep. In order to obtain the most unbiased estimate of how whole-brain network states evolve through the human sleep cycle, we used a Markovian data-driven analysis of continuous neuroimaging data from 57 healthy participants falling asleep during simultaneous functional magnetic resonance imaging (fMRI) and EEG. This Hidden Markov Model (HMM) facilitated discovery of the dynamic choreography between different whole-brain networks across the wake-non-REM sleep cycle. Notably, our results reveal key trajectories to switch within and between EEG-based sleep stages, while highlighting the heterogeneities of stage N1 sleep and wakefulness before and after sleep.
Human brain dynamics and functional connectivity fluctuate over a range of temporal scales in coordination with internal states and environmental demands. However, the neurobiological significance and consequences of functional connectivity dynamics during rest have not yet been established. We show that the coarse-grained clustering of whole-brain dynamic connectivity measured with magnetic resonance imaging reveals discrete patterns (dynamic connectivity states) associated with wakefulness and sleep. We validate this using EEG in healthy subjects and patients with narcolepsy and by matching our results with previous findings in a large collaborative database. We also show that drowsiness may account for previous reports of metastable connectivity states associated with different levels of functional integration. This implies that future studies of transient functional connectivity must independently monitor wakefulness. We conclude that a possible neurobiological significance of dynamic connectivity states, computed at a sufficiently coarse temporal scale, is that of fluctuations in wakefulness.
Awakening: Predicting external stimulation to force transitions between different brain states
(2019)
A fundamental problem in systems neuroscience is how to force a transition from one brain state to another by external driven stimulation in, for example, wakefulness, sleep, coma, or neuropsychiatric diseases. This requires a quantitative and robust definition of a brain state, which has so far proven elusive. Here, we provide such a definition, which, together with whole-brain modeling, permits the systematic study in silico of how simulated brain stimulation can force transitions between different brain states in humans. Specifically, we use a unique neuroimaging dataset of human sleep to systematically investigate where to stimulate the brain to force an awakening of the human sleeping brain and vice versa. We show where this is possible using a definition of a brain state as an ensemble of "metastable substates," each with a probabilistic stability and occurrence frequency fitted by a generative whole-brain model, fine-tuned on the basis of the effective connectivity. Given the biophysical limitations of direct electrical stimulation (DES) of microcircuits, this opens exciting possibilities for discovering stimulation targets and selecting connectivity patterns that can ensure propagation of DES-induced neural excitation, potentially making it possible to create awakenings from complex cases of brain injury.
Interest in time-resolved connectivity in fMRI has grown rapidly in recent years. The most widely used technique for studying connectivity changes over time utilizes a sliding windows approach. There has been some debate about the utility of shorter versus longer windows, the use of fixed versus adaptive windows, as well as whether observed resting state dynamics during wakefulness may be predominantly due to changes in sleep state and subject head motion. In this work we use an independent component analysis (ICA)-based pipeline applied to concurrent EEG/fMRI data collected during wakefulness and various sleep stages and show: 1) connectivity states obtained from clustering sliding windowed correlations of resting state functional network time courses well classify the sleep states obtained from EEG data, 2) using shorter sliding windows instead of longer non-overlapping windows improves the ability to capture transition dynamics even at windows as short as 30 s, 3) motion appears to be mostly associated with one of the states rather than spread across all of them 4) a fixed tapered sliding window approach outperforms an adaptive dynamic conditional correlation approach, and 5) consistent with prior EEG/fMRI work, we identify evidence of multiple states within the wakeful condition which are able to be classified with high accuracy. Classification of wakeful only states suggest the presence of time-varying changes in connectivity in fMRI data beyond sleep state or motion. Results also inform about advantageous technical choices, and the identification of different clusters within wakefulness that are separable suggest further studies in this direction.
Decoding brain states on the intrinsic manifold of human brain dynamics across wakefulness and sleep
(2021)
Current state-of-the-art functional magnetic resonance imaging (fMRI) offers remarkable imaging quality and resolution, yet, the intrinsic dimensionality of brain dynamics in different states (wakefulness, light and deep sleep) remains unknown. Here we present a method to reveal the low dimensional intrinsic manifold underlying human brain dynamics, which is invariant of the high dimensional spatio-temporal representation of the neuroimaging technology. By applying this intrinsic manifold framework to fMRI data acquired in wakefulness and sleep, we reveal the nonlinear differences between wakefulness and three different sleep stages, and successfully decode these different brain states with a mean accuracy across participants of 96%. Remarkably, a further group analysis shows that the intrinsic manifolds of all participants share a common topology. Overall, our results reveal the intrinsic manifold underlying the spatiotemporal dynamics of brain activity and demonstrate how this manifold enables the decoding of different brain states such as wakefulness and various sleep stages.
Consciousness transiently fades away during deep sleep, more stably under anesthesia, and sometimes permanently due to brain injury. The development of an index to quantify the level of consciousness across these different states is regarded as a key problem both in basic and clinical neuroscience. We argue that this problem is ill-defined since such an index would not exhaust all the relevant information about a given state of consciousness. While the level of consciousness can be taken to describe the actual brain state, a complete characterization should also include its potential behavior against external perturbations. We developed and analyzed whole-brain computational models to show that the stability of conscious states provides information complementary to their similarity to conscious wakefulness. Our work leads to a novel methodological framework to sort out different brain states by their stability and reversibility, and illustrates its usefulness to dissociate between physiological (sleep), pathological (brain-injured patients), and pharmacologically-induced (anesthesia) loss of consciousness.
Signature of consciousness in brain-wide synchronization patterns of monkey and human fMRI signals
(2020)
During the sleep-wake cycle, the brain undergoes profound dynamical changes, which manifest subjectively as transitions between conscious experience and unconsciousness. Yet, neurophysiological signatures that can objectively distinguish different consciousness states based are scarce. Here, we show that differences in the level of brain-wide signals can reliably distinguish different stages of sleep and anesthesia from the awake state in human and monkey fMRI resting state data. Moreover, a whole-brain computational model can faithfully reproduce changes in global synchronization and other metrics such as functional connectivity, structure-function relationship, integration and segregation across vigilance states. We demonstrate that the awake brain is close to a Hopf bifurcation, which naturally coincides with the emergence of globally correlated fMRI signals. Furthermore, simulating lesions of individual brain areas highlights the importance of connectivity hubs in the posterior brain and subcortical nuclei for maintaining the model in the awake state, as predicted by graph-theoretical analyses of structural data.
We explore a combinatorial framework which efficiently quantifies the asymmetries between minima and maxima in local fluctuations of time series. We first showcase its performance by applying it to a battery of synthetic cases. We find rigorous results on some canonical dynamical models (stochastic processes with and without correlations, chaotic processes) complemented by extensive numerical simulations for a range of processes which indicate that the methodology correctly distinguishes different complex dynamics and outperforms state of the art metrics in several cases. Subsequently, we apply this methodology to real-world problems emerging across several disciplines including cases in neurobiology, finance and climate science. We conclude that differences between the statistics of local maxima and local minima in time series are highly informative of the complex underlying dynamics and a graph-theoretic extraction procedure allows to use these features for statistical learning purposes.