Refine
Year of publication
- 2021 (2)
Document Type
- Article (2)
Language
- English (2)
Has Fulltext
- yes (2)
Is part of the Bibliography
- no (2)
Keywords
- Acute respiratory distress syndrom (1)
- Adverse effects (1)
- Bacterial infection (1)
- COVID 19 (1)
- Clinical pharmacology (1)
- Continuous renal replacement therapy (1)
- Drug therapy (1)
- Heart failure (1)
- Infection (1)
- Intensive care units (1)
Institute
- Medizin (2)
The scope of extracorporeal membrane oxygenation (ECMO) is expanding, nevertheless, pharmacokinetics in patients receiving cardiorespiratory support are fairly unknown leading to unpredictable drug concentrations. Currently, there are no clear guidelines for antibiotic dosing during ECMO. This study aims to evaluate the pharmacokinetics (PK) of cefazolin in patients undergoing ECMO treatment. Total and unbound plasma cefazolin concentration of critically ill patients on veno-arterial ECMO were determined. Observed PK was compared to dose recommendations calculated by an online available, free dosing software. Concentration of cefazolin varied broadly despite same dosage in all patients. The mean total and unbound plasma concentration were high showing significantly (p = 5.8913 E−09) greater unbound fraction compared to a standard patient. Cefazolin clearance was significantly (p = 0.009) higher in patients with preserved renal function compared with CRRT. Based upon the calculated clearance, the use of dosing software would have led to lower but still sufficient concentrations of cefazolin in general. Our study shows that a “one size fits all” dosing regimen leads to excessive unbound cefazolin concentration in these patients. They exhibit high PK variability and decreased cefazolin clearance on ECMO appears to compensate for ECMO- and critical illness-related increases in volume of distribution.
High sedation needs of critically ill COVID-19 ARDS patients - a monocentric observational study
(2021)
Background: Therapy of severely affected coronavirus patient, requiring intubation and sedation is still challenging. Recently, difficulties in sedating these patients have been discussed. This study aims to describe sedation practices in patients with 2019 coronavirus disease (COVID-19)-induced acute respiratory distress syndrome (ARDS). Methods: We performed a retrospective monocentric analysis of sedation regimens in critically ill intubated patients with respiratory failure who required sedation in our mixed 32-bed university intensive care unit. All mechanically ventilated adults with COVID-19-induced ARDS requiring continuously infused sedative therapy admitted between April 4, 2020, and June 30, 2020 were included. We recorded demographic data, sedative dosages, prone positioning, sedation levels and duration. Descriptive data analysis was performed; for additional analysis, a logistic regression with mixed effect was used. Results: In total, 56 patients (mean age 67 (±14) years) were included. The mean observed sedation period was 224 (±139) hours. To achieve the prescribed sedation level, we observed the need for two or three sedatives in 48.7% and 12.8% of the cases, respectively. In cases with a triple sedation regimen, the combination of clonidine, esketamine and midazolam was observed in most cases (75.7%). Analgesia was achieved using sufentanil in 98.6% of the cases. The analysis showed that the majority of COVID-19 patients required an unusually high sedation dose compared to those available in the literature. Conclusion: The global pandemic continues to affect patients severely requiring ventilation and sedation, but optimal sedation strategies are still lacking. The findings of our observation suggest unusual high dosages of sedatives in mechanically ventilated patients with COVID-19. Prescribed sedation levels appear to be achievable only with several combinations of sedatives in most critically ill patients suffering from COVID-19-induced ARDS and a potential association to the often required sophisticated critical care including prone positioning and ECMO treatment seems conceivable.