Refine
Document Type
- Article (9)
- Preprint (2)
- Conference Proceeding (1)
- Contribution to a Periodical (1)
Has Fulltext
- yes (13)
Is part of the Bibliography
- no (13)
Keywords
- ATP (2)
- ADP (1)
- Adenosine (1)
- Adenylyl cyclase (1)
- E-NTPDase (1)
- Ecto-5'-nucleotidase (1)
- Electron-pion identification (1)
- Fibre/foam sandwich radiator (1)
- Geoffrey Burnstock (1)
- History (1)
Institute
This paper reports on Monte Carlo simulation results for future measurements of the moduli of time-like proton electromagnetic form factors, |GE | and |GM|, using the ¯pp → μ+μ− reaction at PANDA (FAIR). The electromagnetic form factors are fundamental quantities parameterizing the electric and magnetic structure of hadrons. This work estimates the statistical and total accuracy with which the form factors can be measured at PANDA, using an analysis of simulated data within the PandaRoot software framework. The most crucial background channel is ¯pp → π+π−,due to the very similar behavior of muons and pions in the detector. The suppression factors are evaluated for this and all other relevant background channels at different values of antiproton beam momentum. The signal/background separation is based on a multivariate analysis, using the Boosted Decision Trees method. An expected background subtraction is included in this study, based on realistic angular distribuations of the background contribution. Systematic uncertainties are considered and the relative total uncertainties of the form factor measurements are presented.
The Transition Radiation Detector (TRD) was designed and built to enhance the capabilities of the ALICE detector at the Large Hadron Collider (LHC). While aimed at providing electron identification and triggering, the TRD also contributes significantly to the track reconstruction and calibration in the central barrel of ALICE. In this paper the design, construction, operation, and performance of this detector are discussed. A pion rejection factor of up to 410 is achieved at a momentum of 1 GeV/c in p–Pb collisions and the resolution at high transverse momentum improves by about 40% when including the TRD information in track reconstruction. The triggering capability is demonstrated both for jet, light nuclei, and electron selection.
The Transition Radiation Detector (TRD) was designed and built to enhance the capabilities of the ALICE detector at the Large Hadron Collider (LHC). While aimed at providing electron identification and triggering, the TRD also contributes significantly to the track reconstruction and calibration in the central barrel of ALICE. In this paper the design, construction, operation, and performance of this detector are discussed. A pion rejection factor of up to 410 is achieved at a momentum of 1 GeV/c in p-Pb collisions and the resolution at high transverse momentum improves by about 40% when including the TRD information in track reconstruction. The triggering capability is demonstrated both for jet, light nuclei, and electron selection.
The Transition Radiation Detector (TRD) was designed and built to enhance the capabilities of the ALICE detector at the Large Hadron Collider (LHC). While aimed at providing electron identification and triggering, the TRD also contributes significantly to the track reconstruction and calibration in the central barrel of ALICE. In this paper the design, construction, operation, and performance of this detector are discussed. A pion rejection factor of up to 410 is achieved at a momentum of 1 GeV/c in p-Pb collisions and the resolution at high transverse momentum improves by about 40% when including the TRD information in track reconstruction. The triggering capability is demonstrated both for jet, light nuclei, and electron selection.
Geoffrey Burnstock will be remembered as the scientist who set up an entirely new field of intercellular communication, signaling via nucleotides. The signaling cascades involved in purinergic signaling include intracellular storage of nucleotides, nucleotide release, extracellular hydrolysis, and the effect of the released compounds or their hydrolysis products on target tissues via specific receptor systems. In this context ectonucleotidases play several roles. They inactivate released and physiologically active nucleotides, produce physiologically active hydrolysis products, and facilitate nucleoside recycling. This review briefly highlights the development of our knowledge of two types of enzymes involved in extracellular nucleotide hydrolysis and thus purinergic signaling, the ectonucleoside triphosphate diphosphohydrolases, and ecto-5′-nucleotidase.
In mammalian species, including humans, the hippocampal dentate gyrus (DG) is a primary region of adult neurogenesis. Aberrant adult hippocampal neurogenesis is associated with neurological pathologies. Understanding the cellular mechanisms controlling adult hippocampal neurogenesis is expected to open new therapeutic strategies for mental disorders. Microglia is intimately associated with neural progenitor cells in the hippocampal DG and has been implicated, under varying experimental conditions, in the control of the proliferation, differentiation and survival of neural precursor cells. But the underlying mechanisms remain poorly defined. Using fluorescent in situ hybridization we show that microglia in brain express the ADP-activated P2Y13 receptor under basal conditions and that P2ry13 mRNA is absent from neurons, astrocytes, and neural progenitor cells. Disrupting P2ry13 decreases structural complexity of microglia in the hippocampal subgranular zone (SGZ). But it increases progenitor cell proliferation and new neuron formation. Our data suggest that P2Y13 receptor-activated microglia constitutively attenuate hippocampal neurogenesis. This identifies a signaling pathway whereby microglia, via a nucleotide-mediated mechanism, contribute to the homeostatic control of adult hippocampal neurogenesis. Selective P2Y13R antagonists could boost neurogenesis in pathological conditions associated with impaired hippocampal neurogenesis.
Background/Aims: Signaling of Gs protein-coupled receptors (GsPCRs) is accomplished by stimulation of adenylyl cyclase, causing an increase of the intracellular cAMP concentration, activation of the intracellular cAMP effectors protein kinase A (PKA) and Epac, and an efflux of cAMP, the function of which is still unclear.
Methods: Activation of adenylyl cyclase by GsPCR agonists or cholera toxin was monitored by measurement of the intracellular cAMP concentration by ELISA, anti-phospho-PKA substrate motif phosphorylation by immunoblotting, and an Epac-FRET assay in the presence and absence of adenosine receptor antagonists or ecto-nucleotide phosphodiesterase/pyrophosphatase2 (eNPP2) inhibitors. The production of AMP from cAMP by recombinant eNPP2 was measured by HPLC. Extracellular adenosine was determined by LC-MS/MS, extracellular ATP by luciferase and LC-MS/MS. The expression of eNPP isoenzymes 1-3 was examined by RT-PCR. The expression of multidrug resistance protein 4 was suppressed by siRNA.
Results: Here we show that the activation of GsPCRs and the GsPCRs-independent activation of Gs proteins and adenylyl cyclase by cholera toxin induce stimulation of cell surface adenosine receptors (A2A or A2B adenosine receptors). In PC12 cells stimulation of adenylyl cyclase by GsPCR or cholera toxin caused activation of A2A adenosine receptors by an autocrine signaling pathway involving cAMP efflux through multidrug resistance protein 4 and hydrolysis of released cAMP to AMP by eNPP2. In contrast, in PC3 cells cholera toxin- and GsPCR-induced stimulation of adenylyl cyclase resulted in the activation of A2B adenosine receptors.
Conclusion: Our findings show that stimulation of adenylyl cyclase causes a remarkable activation of cell surface adenosine receptors.
Beam measurements with the new RFQ beam matching section at the Frankfurt Funneling Experiment
(2011)
Funneling is a method to increase low energy beam currents in multiple stages. The Frankfurt Funneling Experiment is a model of such a stage. The experiment is built up of two ion sources with electrostatic lens systems, a Two-Beam-RFQ accelerator, a funneling deflector and a beam diagnostic system. The two beams are bunched and accelerated in a Two-Beam RFQ. A funneling deflector combines the bunches to a common beam axis. A new beam transport system between RFQ accelerator and deflector has been constructed and mounted. With these extended RFQ-electrodes the drift between the Two-Beam-RFQ and the rf-deflector will be minimized and therefore unwanted emittance growth reduced. After first rf measurements current work are beam tests with the improved Two-Beam-RFQ. First results will be presented.