Refine
Year of publication
Language
- English (28)
Has Fulltext
- yes (28)
Is part of the Bibliography
- no (28)
Keywords
- dendrite (4)
- morphology (2)
- Adult neurogenesis (1)
- Backpropagating action potential (1)
- Cellular imaging (1)
- Compartmental modeling (1)
- Computational model (1)
- Computer simulation (1)
- Connectomics (1)
- Cortical column (1)
Institute
- Frankfurt Institute for Advanced Studies (FIAS) (20)
- Ernst Strüngmann Institut (15)
- Medizin (15)
- Biowissenschaften (6)
- Informatik und Mathematik (1)
- MPI für Hirnforschung (1)
- Physik (1)
Introduction: Neuronal death and subsequent denervation of target areas are hallmarks of many neurological disorders. Denervated neurons lose part of their dendritic tree, and are considered "atrophic", i.e. pathologically altered and damaged. The functional consequences of this phenomenon are poorly understood.
Results: Using computational modelling of 3D-reconstructed granule cells we show that denervation-induced dendritic atrophy also subserves homeostatic functions: By shortening their dendritic tree, granule cells compensate for the loss of inputs by a precise adjustment of excitability. As a consequence, surviving afferents are able to activate the cells, thereby allowing information to flow again through the denervated area. In addition, action potentials backpropagating from the soma to the synapses are enhanced specifically in reorganized portions of the dendritic arbor, resulting in their increased synaptic plasticity. These two observations generalize to any given dendritic tree undergoing structural changes.
Conclusions: Structural homeostatic plasticity, i.e. homeostatic dendritic remodeling, is operating in long-term denervated neurons to achieve functional homeostasis.
Important brain functions need to be conserved throughout organisms of extremely varying sizes. Here we study the scaling properties of an essential component of computation in the brain: the single neuron. We compare morphology and signal propagation of a uniquely identifiable interneuron, the HS cell, in the blowfly (Calliphora) with its exact counterpart in the fruit fly (Drosophila) which is about four times smaller in each dimension. Anatomical features of the HS cell scale isometrically and minimise wiring costs but, by themselves, do not scale to preserve the electrotonic behaviour. However, the membrane properties are set to conserve dendritic as well as axonal delays and attenuation as well as dendritic integration of visual information. In conclusion, the electrotonic structure of a neuron, the HS cell in this case, is surprisingly stable over a wide range of morphological scales.
Abstract: Integration of synaptic currents across an extensive dendritic tree is a prerequisite for computation in the brain. Dendritic tapering away from the soma has been suggested to both equalise contributions from synapses at different locations and maximise the current transfer to the soma. To find out how this is achieved precisely, an analytical solution for the current transfer in dendrites with arbitrary taper is required. We derive here an asymptotic approximation that accurately matches results from numerical simulations. From this we then determine the diameter profile that maximises the current transfer to the soma. We find a simple quadratic form that matches diameters obtained experimentally, indicating a fundamental architectural principle of the brain that links dendritic diameters to signal transmission.
Author Summary: Neurons take a great variety of shapes that allow them to perform their different computational roles across the brain. The most distinctive visible feature of many neurons is the extensively branched network of cable-like projections that make up their dendritic tree. A neuron receives current-inducing synaptic contacts from other cells across its dendritic tree. As in the case of botanical trees, dendritic trees are strongly tapered towards their tips. This tapering has previously been shown to offer a number of advantages over a constant width, both in terms of reduced energy requirements and the robust integration of inputs at different locations. However, in order to predict the computations that neurons perform, analytical solutions for the flow of input currents tend to assume constant dendritic diameters. Here we introduce an asymptotic approximation that accurately models the current transfer in dendritic trees with arbitrary, continuously changing, diameters. When we then determine the diameter profiles that maximise current transfer towards the cell body we find diameters similar to those observed in real neurons. We conclude that the tapering in dendritic trees to optimise signal transmission is a fundamental architectural principle of the brain.
Much is known about the computation in individual neurons in the cortical column. Also, the selective connectivity between many cortical neuron types has been studied in great detail. However, due to the complexity of this microcircuitry its functional role within the cortical column remains a mystery. Some of the wiring behavior between neurons can be interpreted directly from their particular dendritic and axonal shapes. Here, I describe the dendritic density field (DDF) as one key element that remains to be better understood. I sketch an approach to relate DDFs in general to their underlying potential connectivity schemes. As an example, I show how the characteristic shape of a cortical pyramidal cell appears as a direct consequence of connecting inputs arranged in two separate parallel layers.
Dendritic morphology has been shown to have a dramatic impact on neuronal function. However, population features such as the inherent variability in dendritic morphology between cells belonging to the same neuronal type are often overlooked when studying computation in neural networks. While detailed models for morphology and electrophysiology exist for many types of single neurons, the role of detailed single cell morphology in the population has not been studied quantitatively or computationally. Here we use the structural context of the neural tissue in which dendritic trees exist to drive their generation in silico. We synthesize the entire population of dentate gyrus granule cells, the most numerous cell type in the hippocampus, by growing their dendritic trees within their characteristic dendritic fields bounded by the realistic structural context of (1) the granule cell layer that contains all somata and (2) the molecular layer that contains the dendritic forest. This process enables branching statistics to be linked to larger scale neuroanatomical features. We find large differences in dendritic total length and individual path length measures as a function of location in the dentate gyrus and of somatic depth in the granule cell layer. We also predict the number of unique granule cell dendrites invading a given volume in the molecular layer. This work enables the complete population-level study of morphological properties and provides a framework to develop complex and realistic neural network models.
Dendrites form predominantly binary trees that are exquisitely embedded in the networks of the brain. While neuronal computation is known to depend on the morphology of dendrites, their underlying topological blueprint remains unknown. Here, we used a centripetal branch ordering scheme originally developed to describe river networks—the Horton-Strahler order (SO)–to examine hierarchical relationships of branching statistics in reconstructed and model dendritic trees. We report on a number of universal topological relationships with SO that are true for all binary trees and distinguish those from SO-sorted metric measures that appear to be cell type-specific. The latter are therefore potential new candidates for categorising dendritic tree structures. Interestingly, we find a faithful correlation of branch diameters with centripetal branch orders, indicating a possible functional importance of SO for dendritic morphology and growth. Also, simulated local voltage responses to synaptic inputs are strongly correlated with SO. In summary, our study identifies important SO-dependent measures in dendritic morphology that are relevant for neural function while at the same time it describes other relationships that are universal for all dendrites.
Branching allows neurons to make synaptic contacts with large numbers of other neurons, facilitating the high connectivity of nervous systems. Neuronal arbors have geometric properties such as branch lengths and diameters that are optimal in that they maximize signaling speeds while minimizing construction costs. In this work, we asked whether neuronal arbors have topological properties that may also optimize their growth or function. We discovered that for a wide range of invertebrate and vertebrate neurons the distributions of their subtree sizes follow power laws, implying that they are scale invariant. The power-law exponent distinguishes different neuronal cell types. Postsynaptic spines and branchlets perturb scale invariance. Through simulations, we show that the subtree-size distribution depends on the symmetry of the branching rules governing arbor growth and that optimal morphologies are scale invariant. Thus, the subtree-size distribution is a topological property that recapitulates the functional morphology of dendrites.
Dendritic spines are crucial for excitatory synaptic transmission as the size of a spine head correlates with the strength of its synapse. The distribution of spine head sizes follows a lognormal-like distribution with more small spines than large ones. We analysed the impact of synaptic activity and plasticity on the spine size distribution in adult-born hippocampal granule cells from rats with induced homo- and heterosynaptic long-term plasticity in vivo and CA1 pyramidal cells from Munc-13-1-Munc13-2 knockout mice with completely blocked synaptic transmission. Neither induction of extrinsic synaptic plasticity nor the blockage of presynaptic activity degrades the lognormal-like distribution but changes its mean, variance and skewness. The skewed distribution develops early in the life of the neuron. Our findings and their computational modelling support the idea that intrinsic synaptic plasticity is sufficient for the generation, while a combination of intrinsic and extrinsic synaptic plasticity maintains lognormal like distribution of spines.
Reducing neuronal size results in less cell membrane and therefore lower input conductance. Smaller neurons are thus more excitable as seen in their voltage responses to current injections in the soma. However, the impact of a neuron’s size and shape on its voltage responses to synaptic activation in dendrites is much less understood. Here we use analytical cable theory to predict voltage responses to distributed synaptic inputs and show that these are entirely independent of dendritic length. For a given synaptic density, a neuron’s response depends only on the average dendritic diameter and its intrinsic conductivity. These results remain true for the entire range of possible dendritic morphologies irrespective of any particular arborisation complexity. Also, spiking models result in morphology invariant numbers of action potentials that encode the percentage of active synapses. Interestingly, in contrast to spike rate, spike times do depend on dendrite morphology. In summary, a neuron’s excitability in response to synaptic inputs is not affected by total dendrite length. It rather provides a homeostatic input-output relation that specialised synapse distributions, local non-linearities in the dendrites and synaptic plasticity can modulate. Our work reveals a new fundamental principle of dendritic constancy that has consequences for the overall computation in neural circuits.
The electrical and computational properties of neurons in our brains are determined by a rich repertoire of membrane-spanning ion channels and elaborate dendritic trees. However, the precise reason for this inherent complexity remains unknown. Here, we generated large stochastic populations of biophysically realistic hippocampal granule cell models comparing those with all 15 ion channels to their reduced but functional counterparts containing only 5 ion channels. Strikingly, valid parameter combinations in the full models were more frequent and more stable in the face of perturbations to channel expression levels. Scaling up the numbers of ion channels artificially in the reduced models recovered these advantages confirming the key contribution of the actual number of ion channel types. We conclude that the diversity of ion channels gives a neuron greater flexibility and robustness to achieve target excitability.