Refine
Language
- English (3)
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Keywords
- Genetics (1)
- Genome-wide association studies (1)
- SARS-CoV-2 (1)
- Viral infection (1)
Institute
- Medizin (3)
- MPI für Hirnforschung (2)
The genetic make-up of an individual contributes to the susceptibility and response to viral infection. Although environmental, clinical and social factors have a role in the chance of exposure to SARS-CoV-2 and the severity of COVID-191,2, host genetics may also be important. Identifying host-specific genetic factors may reveal biological mechanisms of therapeutic relevance and clarify causal relationships of modifiable environmental risk factors for SARS-CoV-2 infection and outcomes. We formed a global network of researchers to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity. Here we describe the results of three genome-wide association meta-analyses that consist of up to 49,562 patients with COVID-19 from 46 studies across 19 countries. We report 13 genome-wide significant loci that are associated with SARS-CoV-2 infection or severe manifestations of COVID-19. Several of these loci correspond to previously documented associations to lung or autoimmune and inflammatory diseases3,4,5,6,7. They also represent potentially actionable mechanisms in response to infection. Mendelian randomization analyses support a causal role for smoking and body-mass index for severe COVID-19 although not for type II diabetes. The identification of novel host genetic factors associated with COVID-19 was made possible by the community of human genetics researchers coming together to prioritize the sharing of data, results, resources and analytical frameworks. This working model of international collaboration underscores what is possible for future genetic discoveries in emerging pandemics, or indeed for any complex human disease.
Borders and edges are salient and behaviourally relevant features for navigating the environment. The brain forms dedicated neural representations of environmental boundaries, which are assumed to serve as a reference for spatial coding. Here we expand this border coding network to include the retrosplenial cortex (RSC) in which we identified neurons that increase their firing near all boundaries of an arena. RSC border cells specifically encode walls, but not objects, and maintain their tuning in the absence of direct sensory detection. Unlike border cells in the medial entorhinal cortex (MEC), RSC border cells are sensitive to the animal’s direction to nearby walls located contralateral to the recorded hemisphere. Pharmacogenetic inactivation of MEC led to a disruption of RSC border coding, but not vice versa, indicating network directionality. Together these data shed light on how information about distance and direction of boundaries is generated in the brain for guiding navigation behaviour.
Entorhinal-retrosplenial circuits for allocentric-egocentric transformation of boundary coding
(2020)
Spatial navigation requires landmark coding from two perspectives, relying on viewpoint-invariant and self-referenced representations. The brain encodes information within each reference frame but their interactions and functional dependency remains unclear. Here we investigate the relationship between neurons in the rat's retrosplenial cortex (RSC) and entorhinal cortex (MEC) that increase firing near boundaries of space. Border cells in RSC specifically encode walls, but not objects, and are sensitive to the animal’s direction to nearby borders. These egocentric representations are generated independent of visual or whisker sensation but are affected by inputs from MEC that contains allocentric spatial cells. Pharmaco- and optogenetic inhibition of MEC led to a disruption of border coding in RSC, but not vice versa, indicating allocentric-to-egocentric transformation. Finally, RSC border cells fire prospective to the animal’s next motion, unlike those in MEC, revealing the MEC-RSC pathway as an extended border coding circuit that implements coordinate transformation to guide navigation behavior.