### Refine

#### Year of publication

#### Document Type

- Working Paper (26)
- Report (5)
- Part of Periodical (2)
- Article (1)

#### Has Fulltext

- yes (34)

#### Is part of the Bibliography

- no (34)

#### Keywords

- Contagion (4)
- General Equilibrium (4)
- consumption-portfolio choice (4)
- stochastic differential utility (4)
- Asset Pricing (3)
- capital structure (3)
- financing policy (3)
- incomplete markets (3)
- managerial incentives (3)
- recursive utility (3)

#### Institute

Stocks are exposed to the risk of sudden downward jumps. Additionally, a crash in one stock (or index) can increase the risk of crashes in other stocks (or indices). Our paper explicitly takes this contagion risk into account and studies its impact on the portfolio decision of a CRRA investor both in complete and in incomplete market settings. We find that the investor significantly adjusts his portfolio when contagion is more likely to occur. Capturing the time dimension of contagion, i.e. the time span between jumps in two stocks or stock indices, is thus of first-order importance when analyzing portfolio decisions. Investors ignoring contagion completely or accounting for contagion while ignoring its time dimension suffer large and economically significant utility losses. These losses are larger in complete than in incomplete markets, and the investor might be better off if he does not trade derivatives. Furthermore, we emphasize that the risk of contagion has a crucial impact on investors' security demands, since it reduces their ability to diversify their portfolios.

This paper studies constrained portfolio problems that may involve constraints on the probability or the expected size of a shortfall of wealth or consumption. Our first contribution is that we solve the problems by dynamic programming, which is in contrast to the existing literature that applies the martingale method. More precisely, we construct the non-separable value function by formalizing the optimal constrained terminal wealth to be a (conjectured) contingent claim on the optimal non-constrained terminal wealth. This is relevant by itself, but also opens up the opportunity to derive new solutions to constrained problems. As a second contribution, we thus derive new results for non-strict constraints on the shortfall of inter¬mediate wealth and/or consumption.

We propose a novel approach on how to estimate systemic risk and identify its key determinants. For US financial companies with publicly traded equity options, we extract option-implied value-at-risks and measure the spillover effects between individual company value-at-risks and the option-implied value-at-risk of a financial index. First, we study the spillover effect of increasing company risks on the financial sector. Second, we analyze which companies are mostly affected if the tail risk of the financial sector increases. Key metrics such as size, leverage, market-to-book ratio and earnings have a significant influence on the systemic risk profiles of financial institutions.

We study consumption-portfolio and asset pricing frameworks with recursive preferences and unspanned risk. We show that in both cases, portfolio choice and asset pricing, the value function of the investor/ representative agent can be characterized by a specific semilinear partial differential equation. To date, the solution to this equation has mostly been approximated by Campbell-Shiller techniques, without addressing general issues of existence and uniqueness. We develop a novel approach that rigorously constructs the solution by a fixed point argument. We prove that under regularity conditions a solution exists and establish a fast and accurate numerical method to solve consumption-portfolio and asset pricing problems with recursive preferences and unspanned risk. Our setting is not restricted to affine asset price dynamics. Numerical examples illustrate our approach.

In this paper we provide new evidence that corporate financing decisions are associated with managerial incentives to report high equity earnings. Managers rely most heavily on debt to finance their asset growth when their future earnings prospects are poor, when they are under pressure due to past declines in earnings, negative past stock returns, and excessively optimistic analyst earnings forecasts, and when the earnings yield is high relative to bond yields so that from an accounting perspective equity is ‘expensive’. Managers of high debt issuing firms are more likely to be newly appointed and also more likely to be replaced in subsequent years. Abnormal returns on portfolios formed on the basis of asset growth and debt issuance are strongly positively associated with the contemporaneous changes in returns on assets and on equity as well as with earnings surprises. This may account for the finding that debt issuance forecasts negative abnormal returns, since debt issuance also forecasts negative changes in returns on assets and on equity and negative earnings surprises. Different mechanisms appear to be at work for firms that retire debt.

This paper studies the life cycle consumption-investment-insurance problem of a family. The wage earner faces the risk of a health shock that significantly increases his probability of dying. The family can buy long-term life insurance that can only be revised at significant costs, which makes insurance decisions sticky. Furthermore, a revision is only possible as long as the insured person is healthy. A second important feature of our model is that the labor income of the wage earner is unspanned. We document that the combination of unspanned labor income and the stickiness of insurance decisions reduces the long-term insurance demand significantly. This is because an income shock induces the need to reduce the insurance coverage, since premia become less affordable. Since such a reduction is costly and families anticipate these potential costs, they buy less protection at all ages. In particular, young families stay away from long-term life insurance markets altogether. Our results are robust to adding short-term life insurance, annuities and health insurance.

This paper studies the life cycle consumption-investment-insurance problem of a family. The wage earner faces the risk of a health shock that significantly increases his probability of dying. The family can buy term life insurance with realistic features. In particular, the available contracts are long term so that decisions are sticky and can only be revised at significant costs. Furthermore, a revision is only possible as long as the insured person is healthy. A second important and realistic feature of our model is that the labor income of
the wage earner is unspanned. We document that the combination of unspanned labor income and the stickiness of insurance decisions reduces the insurance demand significantly. This is because an income shock induces the need to reduce the insurance coverage, since premia become less affordable. Since such a reduction is costly and families anticipate these potential costs, they buy less protection at all ages. In particular, young families stay away from life insurance markets altogether.

This paper studies a consumption-portfolio problem where money enters the agent's utility function. We solve the corresponding Hamilton-Jacobi-Bellman equation and provide closed-form solutions for the optimal consumption and portfolio strategy both in an infinite- and finite-horizon setting. For the infinite-horizon problem, the optimal stock demand is one particular root of a polynomial. In the finite-horizon case, the optimal stock demand is given by the inverse of the solution to an ordinary differential equation that can be solved explicitly. We also prove verification results showing that the solution to the Bellman equation is indeed the value function of the problem. From an economic point of view, we find that in the finite-horizon case the optimal stock demand is typically decreasing in age, which is in line with rules of thumb given by financial advisers and also with recent empirical evidence.