Refine
Document Type
- Article (3)
Language
- English (3)
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Keywords
- SARS-CoV-2 (2)
- COVID-19 (1)
- Genetics (1)
- Genome-wide association studies (1)
- In-line filtration (1)
- Inflammation (1)
- Infusion management (1)
- Intensive care (1)
- Interstitial pneumonia (1)
- Lung ultrasound (1)
Institute
- Medizin (3)
The current SARS-CoV-2 outbreak leads to a growing need of point-of-care thoracic imaging that is compatible with isolation settings and infection prevention precautions. We retrospectively reviewed 17 COVID-19 patients who received point-of-care lung ultrasound imaging in our isolation unit. Lung ultrasound was able to detect interstitial lung disease effectively; severe cases showed bilaterally distributed B-Lines with or without consolidations; one case showed bilateral pleural plaques. Corresponding to CT scans, interstitial involvement is accurately depicted as B-Lines on lung ultrasound. Lung ultrasound might be suitable for detecting interstitial involvement in a bedside setting under high security isolation precautions.
In-line filtration of intravenous infusion may reduce organ dysfunction of adult critical patients
(2019)
Background: The potential harmful effects of particle-contaminated infusions for critically ill adult patients are yet unclear. So far, only significant improved outcome in critically ill children and new-borns was demonstrated when using in-line filters, but for adult patients, evidence is still missing.
Methods: This single-centre, retrospective controlled cohort study assessed the effect of in-line filtration of intravenous fluids with finer 0.2 or 1.2 μm vs 5.0 μm filters in critically ill adult patients. From a total of n = 3215 adult patients, n = 3012 patients were selected by propensity score matching (adjusting for sex, age, and surgery group) and assigned to either a fine filter cohort (with 0.2/1.2 μm filters, n = 1506, time period from February 2013 to January 2014) or a control filter cohort (with 5.0 μm filters, n = 1506, time period from April 2014 to March 2015). The cohorts were compared regarding the occurrence of severe vasoplegia, organ dysfunctions (lung, kidney, and brain), inflammation, in-hospital complications (myocardial infarction, ischemic stroke, pneumonia, and sepsis), in-hospital mortality, and length of ICU and hospital stay.
Results: Comparing fine filter vs control filter cohort, respiratory dysfunction (Horowitz index 206 (119–290) vs 191 (104.75–280); P = 0.04), pneumonia (11.4% vs 14.4%; P = 0.02), sepsis (9.6% vs 12.2%; P = 0.03), interleukin-6 (471.5 (258.8–1062.8) ng/l vs 540.5 (284.5–1147.5) ng/l; P = 0.01), and length of ICU (1.2 (0.6–4.9) vs 1.7 (0.8–6.9) days; P < 0.01) and hospital stay (14.0 (9.2–22.2) vs 14.8 (10.0–26.8) days; P = 0.01) were reduced. Rate of severe vasoplegia (21.0% vs 19.6%; P > 0.20) and acute kidney injury (11.8% vs 13.7%; P = 0.11) was not significantly different between the cohorts.
Conclusions: In-line filtration with finer 0.2 and 1.2 μm filters may be associated with less organ dysfunction and less inflammation in critically ill adult patients.
Trial registration: The study was registered at ClinicalTrials.gov (number: NCT02281604).
The genetic make-up of an individual contributes to the susceptibility and response to viral infection. Although environmental, clinical and social factors have a role in the chance of exposure to SARS-CoV-2 and the severity of COVID-191,2, host genetics may also be important. Identifying host-specific genetic factors may reveal biological mechanisms of therapeutic relevance and clarify causal relationships of modifiable environmental risk factors for SARS-CoV-2 infection and outcomes. We formed a global network of researchers to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity. Here we describe the results of three genome-wide association meta-analyses that consist of up to 49,562 patients with COVID-19 from 46 studies across 19 countries. We report 13 genome-wide significant loci that are associated with SARS-CoV-2 infection or severe manifestations of COVID-19. Several of these loci correspond to previously documented associations to lung or autoimmune and inflammatory diseases3,4,5,6,7. They also represent potentially actionable mechanisms in response to infection. Mendelian randomization analyses support a causal role for smoking and body-mass index for severe COVID-19 although not for type II diabetes. The identification of novel host genetic factors associated with COVID-19 was made possible by the community of human genetics researchers coming together to prioritize the sharing of data, results, resources and analytical frameworks. This working model of international collaboration underscores what is possible for future genetic discoveries in emerging pandemics, or indeed for any complex human disease.