Refine
Document Type
- Article (2)
- Preprint (2)
- diplomthesis (1)
- Doctoral Thesis (1)
Has Fulltext
- yes (6)
Is part of the Bibliography
- no (6)
Keywords
- Angiogenesis (1)
- Electron-pion identification (1)
- Fibre/foam sandwich radiator (1)
- HIPPO signalling (1)
- Ionisation energy loss (1)
- Metabolism (1)
- Multi-wire proportional drift chamber (1)
- Neural network (1)
- TOR signalling (1)
- TR (1)
Institute
- Physik (5)
- Frankfurt Institute for Advanced Studies (FIAS) (3)
- Informatik (3)
- Medizin (1)
The Transition Radiation Detector (TRD) was designed and built to enhance the capabilities of the ALICE detector at the Large Hadron Collider (LHC). While aimed at providing electron identification and triggering, the TRD also contributes significantly to the track reconstruction and calibration in the central barrel of ALICE. In this paper the design, construction, operation, and performance of this detector are discussed. A pion rejection factor of up to 410 is achieved at a momentum of 1 GeV/c in p-Pb collisions and the resolution at high transverse momentum improves by about 40% when including the TRD information in track reconstruction. The triggering capability is demonstrated both for jet, light nuclei, and electron selection.
The Transition Radiation Detector (TRD) was designed and built to enhance the capabilities of the ALICE detector at the Large Hadron Collider (LHC). While aimed at providing electron identification and triggering, the TRD also contributes significantly to the track reconstruction and calibration in the central barrel of ALICE. In this paper the design, construction, operation, and performance of this detector are discussed. A pion rejection factor of up to 410 is achieved at a momentum of 1 GeV/c in p-Pb collisions and the resolution at high transverse momentum improves by about 40% when including the TRD information in track reconstruction. The triggering capability is demonstrated both for jet, light nuclei, and electron selection.
The Transition Radiation Detector (TRD) was designed and built to enhance the capabilities of the ALICE detector at the Large Hadron Collider (LHC). While aimed at providing electron identification and triggering, the TRD also contributes significantly to the track reconstruction and calibration in the central barrel of ALICE. In this paper the design, construction, operation, and performance of this detector are discussed. A pion rejection factor of up to 410 is achieved at a momentum of 1 GeV/c in p–Pb collisions and the resolution at high transverse momentum improves by about 40% when including the TRD information in track reconstruction. The triggering capability is demonstrated both for jet, light nuclei, and electron selection.
Ziel der vorliegenden Arbeit ist die Entwicklung, Aufbau und Inbetriebnahme eines Funnelsystems zur Zusammenführung zweier Teilchenstrahlen, bestehend aus zwei Injektionssystemen, zwei RFQ-Beschleunigern, Hochfrequenz-Deflektoren und Diagnoseeinheiten. Die Aufgabe des Experiments ist die praktische Umsetzung eines neuartigen Verfahrens zur Strahlstromerhöhung bei im Idealfall gleichbleibender Emittanz und steigender Brillanz. Notwendig wird dies durch die benötigten hohen Strahlströme im niederenergetischen Bereich einiger zukünftiger geplanter Beschleunigeranlagen. Hier kann der Strahlstrom nicht mehr konventionell von einer einzigen Ionenquelle erzeugt werden. Nur durch die Parallelerzeugung mehrerer Teilchenstrahlen sowie mehrfachem Zusammenführen (Funneling) der Teilchenstrahlen ist es möglich, die notwendigen Strahlströme bei der geforderten kleinen Emittanz zur Verfügung zu stellen. Das Frankfurter Funneling-Experiment ist die skalierte erste HIDIF-Funneling-Stufe als Teil eines Fusionstreibers. Hier werden zwei möglichst identische Helium-Teilchenstrahlen von zwei Ionenquellen erzeugt und in zwei RFQ-Beschleunigern beschleunigt. Der Deflektor biegt die Teilchenstrahlen reißverschlussartig auf eine gemeinsame Strahlachse. Am Anfang der Arbeit stand die Optimierung des Betriebs der Beschleunigerkomponeten und die Entwicklung und der Aufbau eines Einzellendeflektors. Erste erfolgreiche Strahlexperimente zur Strahlvereinigung werden im Kapitel 7.5 vorgestellt. Die Phasenraumellipse des zusammengeführten Strahls zeigt starke bananenförmige Deformierungen, die auf eine schlechte Anpassung des RFQ an den Funnel-Deflektor zurückzuführen sind. Das Elektrodendesign des RFQ ist in zwei unabhängige Bereiche unterteilt. Die erste Zone dient der Beschleunigung der Teilchen. In der zweiten Zone soll erstmals ein sogenannter 3D-Fokus der Strahlradien der x- und y-Ebene und einer longitudinaler Fokussierung erreicht werden. Der zweite Abschnitt bestand für erste Strahltests aus zunächst unmodulierten Elektroden. Zur besseren Anpassung des RFQ an den Funneldeflektor wurde dann das letzte Elektrodenteil erneuert. Der Umbau erfolgte zunächst nur bei einem der beiden RFQ-Beschleuniger. Somit war der direkte Vergleich zwischen altem und neuen Elektrodendesign im Strahlbetrieb möglich. Mit diesem neuen Elektrodenendteil wurde eine Reduktion der Strahlradien der x- sowie y-Ebene, eine bessere longitudinalen Fokussierung sowie eine höhere Transmission erreicht (Kapitel 8). Damit ist es erstmals gelungen mit einer speziellen Auslegung der RFQ-Elektroden eine direkte Anpassung an nachfolgende Elemente zu realisieren. Untersuchungen zur Strahlzusammenführungen werden seit einigen Jahren am Institut durchgeführt. Mit der Entwicklung des 3D-matchers wurde ein weiteres der kritischen Probleme gelöst. Der Umbau des zweiten Beschleunigers findet zur Zeit statt. Nach der Inbetriebnahme werden Funneling-Experimente mit dem Einspalt- und einem neuem Vielspaltdeflektor folgen.
Diese Arbeit entstand im Zusammenhang mit dem Funneling-Experiment am Institut für Angewandte Physik. Dieses Experiment soll die praktische Umsetzung des für das HIDIF-Projekt benötigte Funneln zur Ionenstrom-Erhöhung demonstrieren. Dabei stand die Erzeugung zweier identischer Ionenstrahlen mit einer Energie von 4 keV im Vordergrund. Diese Ionenstrahlen werden in zwei aufeinander zulaufenden RFQ-Beschleunigern auf eine Energie von 160 keV beschleunigt. Der noch in Planung stehende Funneling-Deflektor bringt die beiden Ionenstrahlen auf eine gemeinsame Strahlachse. Zu Beginn der Diplomarbeit stand der Umbau der Emittanzmeßanlage auf eine PC-Plattform. Gleichzeitig wurde ein sogenannter Quellenturm zum Betrieb der Ionenquellen aufgebaut (vgl. Kapitel 7.2). Die Multicusp-Ionenquellen wurden von K. N. Leung vom Lawrence Berkeley National Laboratory (LBNL) entwickelt und gebaut. Das elektrostatische Linsensystem wurde von R. Keller (LBNL) entworfen und berechnet. Die beiden Linsensysteme wurden in unserer Werkstatt gefertigt. Der erste Teil des Testbetriebs der Injektionssysteme, bestehend aus der Multicusp- Ionenquelle sowie dem elektrostatischen Linsensystem auch LEBT (Low Energy Beam Transport) genannt, bestand aus der Messung des Strahlstromes sowie der zugehörigen Emittanz. Zum Messen des Strahlstromes stand eine durch Preßluft in den Ionenstrahl fahrbare Faradaytasse zur Verfügung. Von dieser Faradaytasse wurde eine Kennlinie zur Bestimmung der Spannung der Sekundärelektronen- unterdrückung aufgenommen (vgl. Kapitel 8.1). Zur Messung der Strahlemittanz wurde eine Emittanzmessung nach dem Schlitz-Gitter Prinzip vorgenommen (vgl. Kapitel 5, Kapitel 7.7-7.9). Beim Betreiben der Injektionssysteme stand vor allem der Synchronbetrieb im Vordergrund. Dabei wurde festgestellt, daß eine der beiden Ionenquellen auch ohne Linsensystem einen größeren Strahlstrom liefert (vgl. Kapitel 8.9). Der Unterschied zwischen den Ionenquellen beträgt bei einem Bogenstrom von 6 A über 20 %. Dies bedeutet für den späteren Strahlbetrieb am RFQ, daß zum Erzeugen gleicher Strahlströme eine Ionenquelle immer mit einem kleineren Bogenstrom betrieben werden muß. Die dadurch unterschiedlichen Plasmadichten sowie thermischen Belastungen der Plasmakammer und unterschiedlichen Füllgrade der elektrostatischen Linsen tragen zu den festgestellten Emittanzunterschieden bei. Zum späteren Vergleich der Injektionssysteme wurde ein Injektionssystem durch verschiedene Bogenströme, variierte Spannungen an den elektrostatischen Linsen sowie unterschiedlichen Gasdrücken in der Plasmakammer ausgemessen. Diese Messungen wurden nach Wechseln der Glühkathode sowie Demontage und Neumontage von Ionenquelle und Linsensystem wiederholt. Dabei wurde festgestellt, daß sich der Strahlstrom bei der Vergleichsmessung kaum, die Emittanz der Injektionssysteme aber bis ca. 10% ändert (vgl. Kapitel 8.5). Diese Unterschiede müssen bei dem späteren Vergleich mit dem zweiten Injektionssystem einbezogen werden.Beim Betrieb des zweiten Injektionssystems wurden im direkten Vergleich der Injektionssysteme Unterschiede zwischen dem Strahlstrom sowie der Emittanz festgestellt. Auch hier lieferte das zweite Injektionssystem den schon nach der Ionenquelle festgestellten größeren Ionenstrom. Die gemessenen normierten 90 % RMS-Emittanzen bei einem Strahlstrom von 1 mA betragen am Injektionssystem 1 , beim Injektionssystem 2 , bei einer e1 =0,0288 mm mrad e2 =0,0216 mm mrad Strahlenergie von 4 keV. Die Emittanzunterschiede betragen bis zu 30 %. Im Betrieb mit dem RFQ können die Linsensysteme nicht mit den identischen Spannungen betrieben werden. Dies ist zum einen auf die fertigungsbedingten Unterschiede zurückzuführen, zum anderen auf die abweichenden Plasmadichten zum Erreichen gleicher Strahlströme. Im geplanten HIDIF-Projekt sollen 48 Ionenquellen drei unterschiedliche Teilchenströme erzeugen. Bei dieser Anzahl an Ionenquellen für drei unterschiedliche Ionensorten wird das Erzeugen identischer Teilchenströme sicher noch schwerer zu bewältigen sein. Am Funneling-Experiment ist der Vergleich der beiden Injektionssysteme abgeschlossen. Der Doppelstrahl RFQ-Beschleuniger ist aufgebaut, es wurde bereits ein Ionenstrahl in den RFQ eingeschossen (vgl. Kapitel 8.13). Die normierten 90 % RMS-Emittanzen nach dem RFQ betragen 0,057 mm mrad sowie 0,0625 mm mrad für die beiden Strahlachsen. Der Emittanzunterschied ist kleiner 9 %. Die Emittanzen nach dem RFQ können nicht direkt mit den im Testbetrieb gemessenen Emittanzen der Injektionssysteme verglichen werden. Im Strahlbetrieb mit dem RFQ wurde eine Strahlenergie der Injektionssysteme von 4,15 keV benötigt. Außerdem mußten durch geänderte Einschußbedingungen in den RFQ die Linsenspannungen gegenüber dem Testbetrieb variiert werden. Mit dem Aufbau des Funneling-Deflektors wird zur Zeit begonnen. Nach der Erprobung wird der Einbau in die Strahlachse erfolgen.
Angiogenesis, the process by which endothelial cells (ECs) form new blood vessels from existing ones, is intimately linked to the tissue’s metabolic milieu and often occurs at nutrient-deficient sites. However, ECs rely on sufficient metabolic resources to support growth and proliferation. How endothelial nutrient acquisition and usage are regulated is unknown. Here we show that these processes are instructed by Yes-associated protein 1 (YAP)/WW domain-containing transcription regulator 1 (WWTR1/TAZ)-transcriptional enhanced associate domain (TEAD): a transcriptional module whose function is highly responsive to changes in the tissue environment. ECs lacking YAP/TAZ or their transcriptional partners, TEAD1, 2 and 4 fail to divide, resulting in stunted vascular growth in mice. Conversely, activation of TAZ, the more abundant paralogue in ECs, boosts proliferation, leading to vascular hyperplasia. We find that YAP/TAZ promote angiogenesis by fuelling nutrient-dependent mTORC1 signalling. By orchestrating the transcription of a repertoire of cell-surface transporters, including the large neutral amino acid transporter SLC7A5, YAP/TAZ-TEAD stimulate the import of amino acids and other essential nutrients, thereby enabling mTORC1 activation. Dissociating mTORC1 from these nutrient inputs—elicited by the loss of Rag GTPases—inhibits mTORC1 activity and prevents YAP/TAZ-dependent vascular growth. Together, these findings define a pivotal role for YAP/TAZ-TEAD in controlling endothelial mTORC1 and illustrate the essentiality of coordinated nutrient fluxes in the vasculature.