Refine
Year of publication
Language
- English (596)
Has Fulltext
- yes (596)
Is part of the Bibliography
- no (596)
Keywords
- BESIII (19)
- e +-e − Experiments (19)
- Branching fraction (14)
- Particle and Resonance Production (9)
- Charm Physics (7)
- Spectroscopy (6)
- Hadronic decays (5)
- Quarkonium (5)
- Branching fractions (4)
- Charmonium (4)
Institute
- Physik (594)
- Frankfurt Institute for Advanced Studies (FIAS) (1)
- Informatik (1)
Using a sample of (10.09±0.04)×109 J/ψ events collected with the BESIII detector, a partial wave analysis of J/ψ→γη′η′ is performed.The masses and widths of the observed resonances and their branching fractions are reported. The main contribution is from J/ψ→γf0(2020) with f0(2020)→η′η′, which is found with a significance of greater than 25σ. The product branching fraction B(J/ψ → γf0(2020))⋅B(f0(2020) → η′η′ is measured to be (2.63±0.06(stat.) + 0.31−0.46(syst.))×10−4.
Using 2.93 fb−1 of 𝑒+𝑒− collision data taken at a center-of-mass energy of 3.773 GeV with the BESIII detector, we report the first measurements of the absolute branching fractions of 14 hadronic 𝐷0(+) decays to exclusive final states with an 𝜂, e.g., 𝐷0→𝐾−𝜋+𝜂, 𝐾0𝑆𝜋0𝜂, 𝐾+𝐾−𝜂, 𝐾0𝑆𝐾0𝑆𝜂, 𝐾−𝜋+𝜋0𝜂, 𝐾0𝑆𝜋+𝜋−𝜂, 𝐾0𝑆𝜋0𝜋0𝜂, and 𝜋+𝜋−𝜋0𝜂; 𝐷+→𝐾0𝑆𝜋+𝜂, 𝐾0𝑆𝐾+𝜂, 𝐾−𝜋+𝜋+𝜂, 𝐾0𝑆𝜋+𝜋0𝜂, 𝜋+𝜋+𝜋−𝜂, and 𝜋+𝜋0𝜋0𝜂. Among these decays, the 𝐷0→𝐾−𝜋+𝜂 and 𝐷+→𝐾0 𝑆𝜋+𝜂 decays have the largest branching fractions, which are ℬ(𝐷0→𝐾−𝜋+𝜂) = (1.853±0.025stat±0.031syst)% and ℬ(𝐷+→𝐾0𝑆𝜋+𝜂) = (1.309±0.037stat±0.031syst)%, respectively. The charge-parity asymmetries for the six decays with highest event yields are determined, and no statistically significant charge-parity violation is found.
Using 2.93 fb−1 of 𝑒+𝑒− collision data taken at a center-of-mass energy of 3.773 GeV by the BESIII detector at the BEPCII, we measure the branching fractions of the singly Cabibbo-suppressed decays 𝐷→𝜔𝜋𝜋 to be ℬ(𝐷0→𝜔𝜋+𝜋−)=(1.33±0.16±0.12)×10−3 and ℬ(𝐷+→𝜔𝜋+𝜋0)=(3.87±0.83±0.25)×10−3, where the first uncertainties are statistical and the second ones systematic. The statistical significances are 12.9𝜎 and 7.7𝜎, respectively. The precision of ℬ(𝐷0→𝜔𝜋+𝜋−) is improved by a factor of 2.1 over prior measurements, and ℬ(𝐷+→𝜔𝜋+𝜋0) is measured for the first time. No significant signal for 𝐷0→𝜔𝜋0𝜋0 is observed, and the upper limit on the branching fraction is ℬ(𝐷0→𝜔𝜋0𝜋0)<1.10×10−3 at the 90% confidence level. The branching fractions of 𝐷→𝜂𝜋𝜋 are also measured and consistent with existing results.
Cross sections of the process 𝑒+𝑒−→𝜋0𝜋0𝐽/𝜓 at center-of-mass energies between 3.808 and 4.600 GeV are measured with high precision by using 12.4 fb−1 of data samples collected with the BESIII detector operating at the BEPCII collider facility. A fit to the measured energy-dependent cross sections confirms the existence of the charmoniumlike state 𝑌(4220). The mass and width of the 𝑌(4220) are determined to be (4220.4±2.4±2.3) MeV/𝑐2 and (46.2±4.7±2.1) MeV, respectively, where the first uncertainties are statistical and the second systematic. The mass and width are consistent with those measured in the process 𝑒+𝑒−→𝜋+𝜋−𝐽/𝜓. The neutral charmonium-like state 𝑍𝑐(3900)0 is observed prominently in the 𝜋0𝐽/𝜓 invariant-mass spectrum, and, for the first time, an amplitude analysis is performed to study its properties. The spin-parity of 𝑍𝑐(3900)0 is determined to be 𝐽𝑃=1+, and the pole position is (3893.1±2.2±3.0)−𝑖(22.2±2.6±7.0) MeV/𝑐2, which is consistent with previous studies of electrically charged 𝑍𝑐(3900)±. In addition, cross sections of 𝑒+𝑒− → 𝜋0𝑍𝑐(3900)0 → 𝜋0𝜋0𝐽/𝜓 are extracted, and the corresponding line shape is found to agree with that of the 𝑌(4220).
The Born cross sections of the e+e− → +¯ − and e+e− → −¯ + processes are determined for centerof-mass energy from 2.3864 to 3.0200 GeV with the BESIII detector. The cross section lineshapes can be described properly by a pQCD function and the resulting ratio of effective form factors for the + and − is consistent with 3. In addition, ratios of the + electric and magnetic form factors, |GE /GM |, are obtained at three center-of-mass energies through an analysis of the angular distributions. These measurements, which are studied for the first time in the off-resonance region, provide precision experimental input for understanding baryonic structure. The observed new features of the ± form factors require more theoretical discussions for the hyperons.
Measurement of branching fractions for D meson decaying into ϕ meson and a pseudoscalar meson
(2019)
The four decay modes D0 → φπ0, D0 → φη, D+ → φπ+, and D+ → φK + are studied by using a data sample taken at the centre-of-mass energy √s = 3.773 GeV with the BESIII detector, corresponding to an integrated luminosity of 2.93 fb−1. The branching fractions of the first three decay modes are measured to be B(D0 → φπ0) = (1.168 ± 0.028 ± 0.028) × 10−3, B(D0 → φη) = (1.81 ± 0.46 ± 0.06) × 10−4, and B(D+ → φπ+) = (5.70 ± 0.05 ± 0.13) × 10−3, respectively, where the first uncertainties are statistical and the second are systematic. In addition, the upper limit of the branching fraction for D+ → φK+ is given to be 2.1 × 10−5 at the 90% confidence level. The ratio of B(D0 → φπ0) to B(D+ → φπ+) is calculated to be (20.49 ± 0.50 ± 0.45)%, which is consistent with the theoretical prediction based on isospin symmetry between these two decay modes.
Based on 586 pb−1 of e+e− annihilation data collected at a center-of-mass energy of s√=4.6 GeV with the BESIII detector at the BEPCII collider, the absolute branching fraction of Λ+c→pK0Sη decays is measured for the first time to be B(Λ+c→pK0Sη)=(0.414±0.084±0.028)%, where the first uncertainty is statistical and the second is systematic. The result is compatible with a previous CLEO result on the relative branching fraction B(Λ+c→pK0Sη)B(Λ+c→pK−π+), and consistent with theoretical predictions of SU(3) flavor symmetry.
Born cross sections for the processes e+e− → ωη and e+e− → ωπ0 have been determined for centerof-mass energies between 2.00 and 3.08 GeV with the BESIII detector at the BEPCII collider. The results obtained in this work are consistent with previous measurements but with improved precision. Two resonant structures are observed. In the e+e− → ωη cross sections, a resonance with a mass of (2176 ± 24 ± 3) MeV/c2 and a width of (89 ± 50 ± 5) MeV is observed with a significance of 6.2σ. Its properties are consistent with the φ(2170). In the e+e− → ωπ0 cross sections, a resonance denoted Y (2040) is observed with a significance of more than 10σ. Its mass and width are determined to be (2034 ± 13 ± 9) MeV/c2 and (234 ± 30 ± 25) MeV, respectively, where the first uncertainties are statistical and the second ones are systematic.
There has recently been a dramatic renewal of interest in hadron spectroscopy and charm physics. This renaissance has been driven in part by the discovery of a plethora of charmonium-like XYZ states at BESIII and B factories, and the observation of an intriguing proton-antiproton threshold enhancement and the possibly related X(1835) meson state at BESIII, as well as the threshold measurements of charm mesons and charm baryons.
We present a detailed survey of the important topics in tau-charm physics and hadron physics that can be further explored at BESIII during the remaining operation period of BEPCII. This survey will help in the optimization of the data-taking plan over the coming years, and provides physics motivation for the possible upgrade of BEPCII to higher luminosity.
We report on the first search for ¯Λ−Λ oscillations in the decay 𝐽/𝜓→𝑝𝐾−¯Λ+c.c. by analyzing 1.31×109 𝐽/𝜓 events accumulated with the BESIII detector at the BEPCII collider. The 𝐽/𝜓 events are produced using 𝑒+𝑒− collisions at a center of mass energy √𝑠=3.097 GeV. No evidence for hyperon oscillations is observed. The upper limit for the oscillation rate of ¯Λ to Λ hyperons is determined to be 𝒫(Λ)=[ℬ(𝐽/𝜓→𝑝𝐾−Λ+c.c.)/ℬ(𝐽/𝜓→𝑝𝐾−¯Λ+c.c.)]<4.4×10−6 corresponding to an oscillation parameter 𝛿𝑚Λ¯Λ of less than 3.8×10−18 GeV at the 90% confidence level.