Refine
Year of publication
Language
- English (96)
Has Fulltext
- yes (96)
Is part of the Bibliography
- no (96)
Keywords
- Heavy-ion collisions (3)
- Beam Energy Scan (2)
- Chiral Magnetic Effect (2)
- Collectivity (2)
- Correlation (2)
- Diffraction (2)
- Elastic scattering (2)
- Polarization (2)
- RHIC (2)
- STAR (2)
Institute
- Frankfurt Institute for Advanced Studies (FIAS) (72)
- Physik (21)
- Medizin (2)
Measurements of mass and Λ binding energy of 4ΛH and 4ΛHe in Au+Au collisions at sNN−−−√=3 GeV are presented, with an aim to address the charge symmetry breaking (CSB) problem in hypernuclei systems with atomic number A = 4. The Λ binding energies are measured to be 2.22±0.06(stat.)±0.14(syst.) MeV and 2.38±0.13(stat.)±0.12(syst.) MeV for 4ΛH and 4ΛHe, respectively. The measured Λ binding-energy difference is 0.16±0.14(stat.)±0.10(syst.) MeV for ground states. Combined with the γ-ray transition energies, the binding-energy difference for excited states is −0.16±0.14(stat.)±0.10(syst.) MeV, which is negative and comparable to the value of the ground states within uncertainties. These new measurements on the Λ binding-energy difference in A = 4 hypernuclei systems are consistent with the theoretical calculations that result in ΔB4Λ(1+exc)≈−ΔB4Λ(0+g.s.)<0 and present a new method for the study of CSB effect using relativistic heavy-ion collisions.
Measurements of mass and Λ binding energy of 4ΛH and 4ΛHe in Au+Au collisions at sNN−−−√=3 GeV are presented, with an aim to address the charge symmetry breaking (CSB) problem in hypernuclei systems with atomic number A = 4. The Λ binding energies are measured to be 2.22±0.06(stat.)±0.14(syst.) MeV and 2.38±0.13(stat.)±0.12(syst.) MeV for 4ΛH and 4ΛHe, respectively. The measured Λ binding-energy difference is 0.16±0.14(stat.)±0.10(syst.) MeV for ground states. Combined with the γ-ray transition energies, the binding-energy difference for excited states is −0.16±0.14(stat.)±0.10(syst.) MeV, which is negative and comparable to the value of the ground states within uncertainties. These new measurements on the Λ binding-energy difference in A = 4 hypernuclei systems are consistent with the theoretical calculations that result in ΔB4Λ(1+exc)≈−ΔB4Λ(0+g.s.)<0 and present a new method for the study of CSB effect using relativistic heavy-ion collisions.
Partons traversing the strongly interacting medium produced in heavy-ion collisions are expected to lose energy depending on their color charge and mass. We measure the nuclear modification factors for charm- and bottom-decay electrons, defined as the ratio of yields, scaled by the number of binary nucleon-nucleon collisions, in sNN−−−√ = 200 GeV Au+Au collisions to p+p collisions (RAA), or in central to peripheral Au+Au collisions (RCP). We find the bottom-decay electron RAA and RCP to be significantly higher than that of charm-decay electrons. Model calculations including mass-dependent parton energy loss in a strongly coupled medium are consistent with the measured data. These observations provide clear evidence of mass ordering of charm and bottom quark energy loss when traversing through the strongly coupled medium created in heavy-ion collisions.
We present the first measurements of transverse momentum spectra of π±, K±, p(p¯) at midrapidity (|y|<0.1) in U+U collisions at √sNN = 193 GeV with the STAR detector at the Relativistic Heavy Ion Collider (RHIC). The centrality dependence of particle yields, average transverse momenta, particle ratios and kinetic freeze-out parameters are discussed. The results are compared with the published results from Au+Au collisions at sNN−−−−√= 200 GeV in STAR. The results are also compared to those from A Multi Phase Transport (AMPT) model.
We report the measurement of K∗0 meson at midrapidity (|y|< 1.0) in Au+Au collisions at sNN−−−√~=~7.7, 11.5, 14.5, 19.6, 27 and 39 GeV collected by the STAR experiment during the RHIC beam energy scan (BES) program. The transverse momentum spectra, yield, and average transverse momentum of K∗0 are presented as functions of collision centrality and beam energy. The K∗0/K yield ratios are presented for different collision centrality intervals and beam energies. The K∗0/K ratio in heavy-ion collisions are observed to be smaller than that in small system collisions (e+e and p+p). The K∗0/K ratio follows a similar centrality dependence to that observed in previous RHIC and LHC measurements. The data favor the scenario of the dominance of hadronic re-scattering over regeneration for K∗0 production in the hadronic phase of the medium.
Azimuthal anisotropy measurement of (multi-)strange hadrons in Au+Au collisions at √sNN = 54.4 GeV
(2023)
Azimuthal anisotropy of produced particles is one of the most important observables used to access the collective properties of the expanding medium created in relativistic heavy-ion collisions. In this paper, we present second (v2) and third (v3) order azimuthal anisotropies of K0S, ϕ, Λ, Ξ and Ω at mid-rapidity (|y|<1) in Au+Au collisions at sNN−−−√ = 54.4 GeV measured by the STAR detector. The v2 and v3 are measured as a function of transverse momentum and centrality. Their energy dependence is also studied. v3 is found to be more sensitive to the change in the center-of-mass energy than v2. Scaling by constituent quark number is found to hold for v2 within 10%. This observation could be evidence for the development of partonic collectivity in 54.4 GeV Au+Au collisions. Differences in v2 and v3 between baryons and anti-baryons are presented, and ratios of v3/v3/22 are studied and motivated by hydrodynamical calculations. The ratio of v2 of ϕ mesons to that of anti-protons (v2(ϕ)/v2(p¯)) shows centrality dependence at low transverse momentum, presumably resulting from the larger effects from hadronic interactions on anti-proton v2.
Partons traversing the strongly interacting medium produced in heavy-ion collisions are expected to lose energy depending on their color charge and mass. We measure the nuclear modification factors for charm- and bottom-decay electrons, defined as the ratio of yields, scaled by the number of binary nucleon-nucleon collisions, in sNN−−−√ = 200 GeV Au+Au collisions to p+p collisions (RAA), or in central to peripheral Au+Au collisions (RCP). We find the bottom-decay electron RAA and RCP to be significantly higher than that of charm-decay electrons. Model calculations including mass-dependent parton energy loss in a strongly coupled medium are consistent with the measured data. These observations provide clear evidence of mass ordering of charm and bottom quark energy loss when traversing through the strongly coupled medium created in heavy-ion collisions.
Partons traversing the strongly interacting medium produced in heavy-ion collisions are expected to lose energy depending on their color charge and mass. We measure the nuclear modification factors for charm- and bottom-decay electrons, defined as the ratio of yields, scaled by the number of binary nucleon-nucleon collisions, in sNN−−−√ = 200 GeV Au+Au collisions to p+p collisions (RAA), or in central to peripheral Au+Au collisions (RCP). We find the bottom-decay electron RAA and RCP to be significantly higher than that of charm-decay electrons. Model calculations including mass-dependent parton energy loss in a strongly coupled medium are consistent with the measured data. These observations provide clear evidence of mass ordering of charm and bottom quark energy loss when traversing through the strongly coupled medium created in heavy-ion collisions.
Partons traversing the strongly interacting medium produced in heavy-ion collisions are expected to lose energy depending on their color charge and mass. We measure the nuclear modification factors for charm- and bottom-decay electrons, defined as the ratio of yields, scaled by the number of binary nucleon-nucleon collisions, in sNN−−−√ = 200 GeV Au+Au collisions to p+p collisions (RAA), or in central to peripheral Au+Au collisions (RCP). We find the bottom-decay electron RAA and RCP to be significantly higher than that of charm-decay electrons. Model calculations including mass-dependent parton energy loss in a strongly coupled medium are consistent with the measured data. These observations provide clear evidence of mass ordering of charm and bottom quark energy loss when traversing through the strongly coupled medium created in heavy-ion collisions.