Refine
Document Type
- Article (8)
- Conference Proceeding (3)
- Part of a Book (1)
Language
- English (12)
Has Fulltext
- yes (12)
Is part of the Bibliography
- no (12)
Keywords
- Alteration (1)
- Boron isotopes (1)
- Geochemistry (1)
- Mantle (1)
- Nd isotopes (1)
- Oceanic crust (1)
- Petrology (1)
- Seawater (1)
- Solid Earth sciences (1)
- Sr isotopes (1)
Institute
This chapter reviews the boron isotopic composition of the ocean floor, including pristine igneous oceanic crust such as mid-ocean ridge basalts and ocean island basalts and their implications for the B isotopic composition of the mantle. The chapter further discusses the B isotopic effects of assimilation of altered crustal materials in mantle-derived magmas. The systematics of seawater alteration on oceanic rocks are discussed, including sediments, igneous crust and serpentinization of ultramafic rocks and the respective marine hydrothermal vent fluids. The chapter concludes with a discussion of the secular evolution of the B isotopic composition of seawater.
Metasomatic reaction zones between mafic and ultramafic rocks exhumed from subduction zones provide a window into mass-transfer processes at high pressure. However, accurate interpretation of the rock record requires distinguishing high-pressure metasomatic processes from inherited oceanic signatures prior to subduction. We integrated constraints from bulk-rock geochemical compositions and petrophysical properties, mineral chemistry, and thermodynamic modeling to understand the formation of reaction zones between juxtaposed metagabbro and serpentinite as exemplified by the Voltri Massif (Ligurian Alps, Italy). Distinct zones of variably metasomatized metagabbro are dominated by chlorite, amphibole, clinopyroxene, epidote, rutile, ilmenite, and titanite between serpentinite and eclogitic metagabbro. Whereas the precursor serpentinite and oxide gabbro formed and were likely already in contact in an oceanic setting, the reaction zones formed by diffusional Mg-metasomatism between the two rocks from prograde to peak, to retrograde conditions in a subduction zone. Metasomatism of mafic rocks by Mg-rich fluids that previously equilibrated with serpentinite could be widespread along the subduction interface, within the subducted slab, and the mantle wedge. Furthermore, the models predict that talc formation by Si-metasomatism of serpentinite in subduction zones is limited by pressure-dependent increase in the silica activity buffered by the serpentine-talc equilibrium. Elevated activities of aqueous Ca and Al species would also favor the formation of chlorite and garnet. Accordingly, unusual conditions or processes would be required to stabilize abundant talc at high P-T conditions. Alternatively, a different set of mineral assemblages, such as serpentine- or chlorite-rich rocks, may be controlling the coupling-decoupling transition of the plate interface.
Talc formation via silica-metasomatism of ultramafic rocks is believed to play key roles in subduction zone processes. Yet, the conditions of talc formation remain poorly constrained. We used thermodynamic reaction-path models to assess the formation of talc at the slab-mantle interface and show that it is restricted to a limited set of pressure–temperature conditions, protolith, and fluid compositions. In contrast, our models predict that chlorite formation is ubiquitous at conditions relevant to the slab-mantle interface of subduction zones. The scarcity of talc and abundance of chlorite is evident in the rock record of exhumed subduction zone terranes. Talc formation during Si-metasomatism may thus play a more limited role in volatile cycling, strain localization, and in controlling the decoupling-coupling transition of the plate interface. Conversely, the observed and predicted ubiquity of chlorite corroborates its prominent role in slab-mantle interface processes that previous studies attributed to talc.
Key Points:
Limited talc formation by Si-metasomatism of ultramafic rocks in subduction zones
Chlorite formation is likely pervasive at the slab-mantle interface
Preferential formation of chlorite has wide-ranging chemical and physical implications for subduction zone processes
Plain Language Summary: In subduction zones, talc can form during chemical reactions of mantle rocks with silica-enriched fluids at the interface between descending oceanic plates and the overriding mantle. Its formation and distribution in subduction zones are believed to affect the volatile budget, rheological properties, and the down-dip limit of the decoupling of the slab-mantle interface. Therefore, illuminating the conditions that facilitate talc formation at high pressure-temperature conditions is key in assessing its roles in fundamental subduction zone processes. Using thermodynamic reaction-path models, we show that the formation of talc at the slab-mantle interface is restricted to a limited set of environmental conditions, because its formation is highly sensitive to the compositions of the mantle rocks and reactant fluids. Contrary to common belief, talc is unlikely to form in high abundance in ultramafic rocks metasomatized by Si-rich slab-derived fluids. Rather, our models predict the ubiquitous formation of chlorite along with other silicate minerals during Si-metasomatism due to the competing effects from other dissolved components that favor their formation over talc. This study calls into question the importance of talc during Si-metasomatism in subduction zones but highlights the more predominant role of chlorite.
Garnet xenocrysts from kimberlites provide unique insights into the composition, structure and evolution of the subcontinental lithospheric mantle (SCLM). For example, different metasomatic events in the SCLM are reflected in compositional differences between garnet xenocrysts. As mantle metasomatism largely controls the physical and chemical properties of the SCLM, it exerts first order control over the genesis of kimberlitic magmas and diamond formation. However, dating mantle lithologies and processes is complicated by high ambient temperatures that allow the equilibration of most isotopic systems up to the time of kimberlite eruption. As a consequence, the temporal connection between metasomatic events in the mantle and kimberlite genesis is commonly ambiguous.
In this study, we applied LA-ICPMS U-Pb dating to 43 harzburgitic, lherzolithic and megacrystic garnet xenocrysts from the ~376 Ma diamondiferous V. Grib kimberlite, Russia, in order to investigate the link between different types of mantle metasomatism and kimberlite genesis.
Our results indicate that, with two possible exceptions, only harzburgitic garnet overlaps in age with the kimberlite eruption, whereas lherzolitic and megacrystic garnet crystals are ~20 to 130 million years older. Furthermore, garnet U-Pb ages and Ni-in-garnet temperatures of ~820 to 1200 °C do not correlate. This, and the high closure temperature of U-Pb in garnet (≥900 °C) suggests that the garnet U-Pb ages indeed reflect metasomatic events in the SCLM. However, the U-Pb ages could also reflect cooling ages. In this case, the metasomatic events recorded in the garnet crystals must still have occurred up to ~130 million years prior to the eruption of the V. Grib kimberlite.
These findings have far-reaching implications for the genesis of (diamondiferous) kimberlites, as they clearly show that the time lag between metasomatic events in the SCLM, as recorded in kimberlitic garnet xenocrysts, and kimberlite eruption may extend to tens of millions of years.
Fossil records of early solar irradiation and cosmolocation of the CAI factory: a reappraisal
(2021)
Calcium-aluminum–rich inclusions (CAIs) in meteorites carry crucial information about the environmental conditions of the nascent Solar System prior to planet formation. Based on models of 50V–10Be co-production by in-situ irradiation, CAIs are considered to have formed within ~0.1 AU from the proto-Sun. Here, we present vanadium (V) and strontium (Sr) isotopic co-variations in fine- and coarse-grained CAIs and demonstrate that kinetic isotope effects during partial condensation and evaporation best explain V isotope anomalies previously attributed to solar particle irradiation. We also report initial excesses of 10Be and argue that CV CAIs possess essentially a homogeneous level of 10Be, inherited during their formation. Based on numerical modeling of 50V–10Be co-production by irradiation, we show that CAI formation during protoplanetary disk build-up likely occurred at greater heliocentric distances than previously considered, up to planet-forming regions (~1AU), where solar particle fluxes were sufficiently low to avoid substantial in-situ irradiation of CAIs.
In subduction zones, sediments and hydrothermally altered oceanic crust, which together form part of the subducting slab, contribute to the chemical composition of lavas erupted at the surface to form volcanic arcs. Transport of this material from the slab to the overlying mantle wedge is thought to involve discreet melts and fluids that are released from various portions of the slab. We use a meta-analysis of geochemical data from eight globally representative arcs to show that melts and fluids from individual slab components cannot be responsible for the formation of arc lavas. Instead, the data are compatible with models that first invoke physical mixing of slab components and the mantle wedge, widely referred to as high-pressure mélange, before arc magmas are generated.
The mechanisms of transfer of crustal material from the subducting slab to the overlying mantle wedge are still debated. Mélange rocks, formed by mixing of sediments, oceanic crust, and ultramafics along the slab-mantle interface, are predicted to ascend as diapirs from the slab-top and transfer their compositional signatures to the source region of arc magmas. However, the compositions of melts that result from the interaction of mélanges with a peridotite wedge remain unknown. Here we present experimental evidence that melting of peridotite hybridized by mélanges produces melts that carry the major and trace element abundances observed in natural arc magmas. We propose that differences in nature and relative contributions of mélanges hybridizing the mantle produce a range of primary arc magmas, from tholeiitic to calc-alkaline. Thus, assimilation of mélanges into the wedge may play a key role in transferring subduction signatures from the slab to the source of arc magmas.
Hyrrokkin sarcophaga is a parasitic foraminifera that is commonly found in cold-water coral reefs where it infests the file clam Acesta excavata and the scleractinian coral Desmophyllum pertusum (formerly known as Lophelia pertusa). Here, we present measurements of the trace element and isotopic composition of these parasitic foraminifera, analyzed by inductively coupled optical emission spectrometry (ICP-OES), electron probe microanalysis (EPMA) and mass spectrometry (gas-source MS and inductively-coupled-plasma MS). Our results reveal that the geochemical signature of H. sarcophaga depends on the host organism it infests. Sr / Ca ratios are 1.1 mmol mol−1 higher in H. sarcophaga that infest D. pertusum, which could be an indication that dissolved host carbonate material is utilized in shell calcification, given that the aragonite of D. pertusum has a naturally higher Sr concentration compared to the calcite of A. excavata. Similarly, we measure 3.1 ‰ lower δ13C and 0.25 ‰ lower δ18O values in H. sarcophaga that lived on D. pertusum, which might be caused by the direct uptake of the host's carbonate material with a more negative isotopic composition or different pH regimes in these foraminifera (pH can exert a control on the extent of CO2 hydration/hydroxylation) due to the uptake of body fluids of the host. We also observe higher Mn / Ca ratios in foraminifera that lived on A. excavata but did not penetrate the host shell compared to specimen that penetrated the shell, which could be interpreted as a change in food source, changes in the calcification rate, Rayleigh fractionation or changing oxygen conditions. While our measurements provide an interesting insight into the calcification process of this unusual foraminifera, these data also indicate that the geochemistry of this parasitic foraminifera is unlikely to be a reliable indicator of paleoenvironmental conditions using Sr / Ca, Mn / Ca, δ18O or δ13C unless the host organism is known and its geochemical composition can be accounted for.
Hyrrokkin sarcophaga is a parasitic foraminifer that is commonly found in cold-water coral reefs where it infests the file clam Acesta excavata and the scleractinian coral Lophelia pertusa. Here, we present measurements of the elemental and isotopic composition of this parasitic foraminifer for the first time, analyzed by inductively coupled optical emission spectrometry (ICP-OES), electron probe micro analysis (EPMA) and mass spectrometry (MS). Our results reveal that the geochemical signature of H. sarcophaga depends on the host organism it infests. Sr/Ca ratios are 1.1 mmol mol-1 higher in H. sarcophaga that infest L. pertusa, which could be an indication that dissolved host carbonate material is utilised in shell calcification, given that the aragonite of L. pertusa has a naturally higher Sr concentration compared to the calcite of A. excavata.Similarly, we measure 3.1 ‰ lower δ13C and 0.25 ‰ lower δ18O values in H. sarcophaga that lived on20 L. pertusa, which might be caused by the direct uptake of the host’s carbonate material with a more negative isotopic composition or different pH regimes in these foraminifera (pH can exert a control on the extent of CO2 hydration/hydroxylation) due to the uptake of body fluids of the host. We also observe higher Mn/Ca ratios in foraminifers that lived on A. excavata but did not penetrate the host shell compared to specimen that penetrated the shell, which could be interpreted as a change in food source, changes in the calcification rate, Rayleigh fractionation or changing oxygen conditions. While our measurements provide an interesting insight into the calcification process of this unusual foraminifer, these data also indicate that the geochemistry of this parasitic foraminifer is unlikely to be a reliable indicator of paleoenvironmental conditions using Sr/Ca, Mn/Ca, δ18O or δ13C unless the host organism is known and its geochemical composition can be accounted for.
Sulfur in the slab: a sulfur-isotopes and thermodynamic-modeling perspective from exhumed terranes
(2022)
Sulfur is a key element in the subduction zone-volcanic arc system; however, the mechanism(s) that recycle sulfur from the slab into the overlying volcanic arc are debated. Here we summarize recent advances in quantifying this component of the deep sulfur cycle. First, primary metamorphic or inherited sulfides in oceanic-type eclogites are only rarely observed as inclusions and are typically absent from the rock matrix. Additionally, sulfides are relatively common in rocks metasomatized at the slab-mantle interface by slab-derived fluids during exhumation. Combined, these two observations suggest that sulfur loss from subducted mafic crust is relatively efficient. Thermodynamic modeling in Perple_X using the Holland and Powell (2011) database combined with the Deep Earth Water model suggests that the efficiency and speciation of sulfur loss varies depending on the degree of seafloor alteration prior to subduction and the geothermal gradient of the slab. In relatively cold subduction zones, such as Honshu, slab-fluids derived from subducted mafic crust are predicted to exhibit elevated concentrations of HSO4-, SO42-, HSO3-, and CaSO4(aq), whereas hot subduction zones, such as Cascadia, are predicted to produce slab fluids enriched in HS- and H2S at lower pressures. The oxidation of sulfur expelled from subducted pyrite is balanced by the reduction of Fe3+ to Fe2+, consistent with the low Fe3+/SFe of exhumed eclogites relative to blueschists and altered oceanic crust. Where oxidized S-bearing fluids are produced, they are anticipated to interact with more reduced rocks at the slab-mantle interface and within the mantle wedge, resulting in sulfide precipitation and significant isotopic fractionation. The δ34S values of slab fluids are estimated to fall between -11 and +8 ‰. Rayleigh fractionation during progressive fluid-rock interaction results in fractionations of tens of per mil as oxidized species are depleted and sulfides are precipitated, resulting in δ34S values of sulfides that easily span the -21.7 to +13.9 ‰ range observed in metasomatic sulfides in exhumed high-pressure rocks. However, in subduction zones where reduced species prevail, the S isotopic signature of slab fluids is expected to reflect their source and will exhibit a narrower range in δ34S values. As a result, the δ34S values measured in arc magmas may not always be a reliable indicator of the contribution of different components of the slab, such as sediments vs. AOC. Additionally, the impact of S recycling on the oxygen fugacity of arc magmas is expected to vary both spatially and temporally throughout Earth history.