Refine
Year of publication
Language
- English (157)
Has Fulltext
- yes (157)
Is part of the Bibliography
- no (157)
Keywords
- Heavy-ion collisions (4)
- Diffraction (3)
- Elastic scattering (3)
- Beam Energy Scan (2)
- Chiral Magnetic Effect (2)
- Collectivity (2)
- Correlation (2)
- Crossover (2)
- Event-by-event fluctuation (2)
- Heavy ion collisions (2)
Institute
- Frankfurt Institute for Advanced Studies (FIAS) (116)
- Physik (39)
- Medizin (1)
Density fluctuations near the QCD critical point can be probed via an intermittency analysis in relativistic heavy-ion collisions. We report the first measurement of intermittency in Au+Au collisions at sNN−−−√ = 7.7-200 GeV measured by the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The scaled factorial moments of identified charged hadrons are analyzed at mid-rapidity and within the transverse momentum phase space. We observe a power-law behavior of scaled factorial moments in Au+Au collisions and a decrease in the extracted scaling exponent (ν) from peripheral to central collisions. The ν is consistent with a constant for different collisions energies in the mid-central (10-40\%) collisions. Moreover, the ν in the 0-5\% most central Au+Au collisions exhibits a non-monotonic energy dependence that reaches a possible minimum around sNN−−−√ = 27 GeV. The physics implications on the QCD phase structure are discussed.
Density fluctuations near the QCD critical point can be probed via an intermittency analysis in relativistic heavy-ion collisions. We report the first measurement of intermittency in Au+Au collisions at √sNN = 7.7-200 GeV measured by the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The scaled factorial moments of identified charged hadrons are analyzed at mid-rapidity and within the transverse momentum phase space. We observe a power-law behavior of scaled factorial moments in Au+Au collisions and a decrease in the extracted scaling exponent (ν) from peripheral to central collisions. The ν is consistent with a constant for different collisions energies in the mid-central (10-40%) collisions. Moreover, the ν in the 0-5% most central Au+Au collisions exhibits a non-monotonic energy dependence that reaches a minimum around √sNN = 27 GeV. The physics implications on the QCD phase structure are discussed.
The polarization of Λ and Λ¯ hyperons along the beam direction has been measured relative to the second and third harmonic event planes in isobar Ru+Ru and Zr+Zr collisions at √sNN = 200 GeV. This is the first experimental evidence of the hyperon polarization by the triangular flow originating from the initial density fluctuations. The amplitudes of the sine modulation for the second and third harmonic results are comparable in magnitude, increase from central to peripheral collisions, and show a mild pT dependence. The azimuthal angle dependence of the polarization follows the vorticity pattern expected due to elliptic and triangular anisotropic flow, and qualitatively disagree with most hydrodynamic model calculations based on thermal vorticity and shear induced contributions. The model results based on one of existing implementations of the shear contribution lead to a correct azimuthal angle dependence, but predict centrality and pT dependence that still disagree with experimental measurements. Thus, our results provide stringent constraints on the thermal vorticity and shear-induced contributions to hyperon polarization. Comparison to previous measurements at RHIC and the LHC for the second-order harmonic results shows little dependence on the collision system size and collision energy.
The longitudinal and transverse spin transfers to Λ (Λ¯¯¯¯) hyperons in polarized proton-proton collisions are expected to be sensitive to the helicity and transversity distributions, respectively, of (anti-)strange quarks in the proton, and to the corresponding polarized fragmentation functions. We report improved measurements of the longitudinal spin transfer coefficient, DLL, and the transverse spin transfer coefficient, DTT, to Λ and Λ¯¯¯¯ in polarized proton-proton collisions at s√ = 200 GeV by the STAR experiment at RHIC. The data set includes longitudinally polarized proton-proton collisions with an integrated luminosity of 52 pb−1, and transversely polarized proton-proton collisions with a similar integrated luminosity. Both data sets have about twice the statistics of previous results and cover a kinematic range of |ηΛ(Λ¯¯¯¯)| < 1.2 and transverse momentum pT,Λ(Λ¯¯¯¯) up to 8 GeV/c. We also report the first measurements of the hyperon spin transfer coefficients DLL and DTT as a function of the fractional jet momentum z carried by the hyperon, which can provide more direct constraints on the polarized fragmentation functions.
The longitudinal and transverse spin transfers to Λ (Λ¯¯¯¯) hyperons in polarized proton-proton collisions are expected to be sensitive to the helicity and transversity distributions, respectively, of (anti-)strange quarks in the proton, and to the corresponding polarized fragmentation functions. We report improved measurements of the longitudinal spin transfer coefficient, DLL, and the transverse spin transfer coefficient, DTT, to Λ and Λ¯¯¯¯ in polarized proton-proton collisions at s√ = 200 GeV by the STAR experiment at RHIC. The data set includes longitudinally polarized proton-proton collisions with an integrated luminosity of 52 pb−1, and transversely polarized proton-proton collisions with a similar integrated luminosity. Both data sets have about twice the statistics of previous results and cover a kinematic range of |ηΛ(Λ¯¯¯¯)| < 1.2 and transverse momentum pT,Λ(Λ¯¯¯¯) up to 8 GeV/c. We also report the first measurements of the hyperon spin transfer coefficients DLL and DTT as a function of the fractional jet momentum z carried by the hyperon, which can provide more direct constraints on the
Jet-hadron correlations with respect to the event plane in √sNN = 200 GeV Au+Au collisions in STAR
(2024)
Angular distributions of charged particles relative to jet axes are studied in sNN−−−√ = 200 GeV Au+Au collisions as a function of the jet orientation with respect to the event plane. This differential study tests the expected path-length dependence of energy loss experienced by a hard-scattered parton as it traverses the hot and dense medium formed in heavy-ion collisions. A second-order event plane is used in the analysis as an experimental estimate of the reaction plane formed by the collision impact parameter and the beam direction. Charged-particle jets with 15<pT,jet< 20 and 20<pT,jet< 40 GeV/c were reconstructed with the anti-kT algorithm with radius parameter setting of (R=0.4) in the 20-50\% centrality bin to maximize the initial-state eccentricity of the interaction region. The reaction plane fit method is implemented to remove the flow-modulated background with better precision than prior methods. Yields and widths of jet-associated charged-hadron distributions are extracted in three angular bins between the jet axis and the event plane. The event-plane (EP) dependence is further quantified by ratios of the associated yields in different EP bins. No dependence on orientation of the jet axis with respect to the event plane is seen within the uncertainties in the kinematic regime studied. This finding is consistent with a similar experimental observation by ALICE in sNN−−−√ = 2.76 TeV Pb+Pb collision data.
We report results on an elastic cross section measurement in proton-proton collisions at a center-of-mass energy s√=510 GeV, obtained with the Roman Pot setup of the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The elastic differential cross section is measured in the four-momentum transfer squared range 0.23≤−t≤0.67 GeV2. We find that a constant slope B does not fit the data in the aforementioned t range, and we obtain a much better fit using a second-order polynomial for B(t). The t dependence of B is determined using six subintervals of t in the STAR measured t range, and is in good agreement with the phenomenological models. The measured elastic differential cross section dσ/dt agrees well with the results obtained at s√=546 GeV for proton--antiproton collisions by the UA4 experiment. We also determine that the integrated elastic cross section within the STAR t-range is σfidel=462.1±0.9(stat.)±1.1(syst.)±11.6(scale) μb.
We report a new measurement of the production of electrons from open heavy-flavor hadron decays (HFEs) at mid-rapidity (|y|< 0.7) in Au+Au collisions at sNN−−−√=200 GeV. Invariant yields of HFEs are measured for the transverse momentum range of 3.5<pT<9 GeV/c in various configurations of the collision geometry. The HFE yields in head-on Au+Au collisions are suppressed by approximately a factor of 2 compared to that in p+p collisions scaled by the average number of binary collisions, indicating strong interactions between heavy quarks and the hot and dense medium created in heavy-ion collisions. Comparison of these results with models provides additional tests of theoretical calculations of heavy quark energy loss in the quark-gluon plasma.
We report a new measurement of the production of electrons from open heavy-flavor hadron decays (HFEs) at mid-rapidity (|y|< 0.7) in Au+Au collisions at sNN−−−√=200 GeV. Invariant yields of HFEs are measured for the transverse momentum range of 3.5<pT<9 GeV/c in various configurations of the collision geometry. The HFE yields in head-on Au+Au collisions are suppressed by approximately a factor of 2 compared to that in p+p collisions scaled by the average number of binary collisions, indicating strong interactions between heavy quarks and the hot and dense medium created in heavy-ion collisions. Comparison of these results with models provides additional tests of theoretical calculations of heavy quark energy loss in the quark-gluon plasma.