Refine
Year of publication
Language
- English (50)
Has Fulltext
- yes (50)
Is part of the Bibliography
- no (50)
Keywords
- Apoptosis (1)
- Cardiology (1)
- Distributed software development (1)
- Geometrical modelling (1)
- Geometrisches Modellieren (1)
- Heavy-ion detectors (1)
- Large detector systems for particle and astroparticle physics (1)
- Long non-coding RNAs (1)
- Objectoriented technology (1)
- Objektorientierte Technologie (1)
Institute
Elliptic flow from nuclear collisions is a hadronic observable sensitive to the early stages of system evolution. We report first results on elliptic flow of charged particles at midrapidity in Au+Au collisions at sqrt[sNN] = 130 GeV using the STAR Time Projection Chamber at the Relativistic Heavy Ion Collider. The elliptic flow signal, v2, averaged over transverse momentum, reaches values of about 6% for relatively peripheral collisions and decreases for the more central collisions. This can be interpreted as the observation of a higher degree of thermalization than at lower collision energies. Pseudorapidity and transverse momentum dependence of elliptic flow are also presented.
Elliptic flow from nuclear collisions is a hadronic observable sensitive to the early stages of system evolution. We report first results on elliptic flow of charged particles at midrapidity in Au+Au collisions at sqrt(s_NN)=130 GeV using the STAR TPC at RHIC. The elliptic flow signal, v_2, averaged over transverse momentum, reaches values of about 6% for relatively peripheral collisions and decreases for the more central collisions. This can be interpreted as the observation of a higher degree of thermalization than at lower collision energies. Pseudorapidity and transverse momentum dependence of elliptic flow are also presented.
Mid-rapidity transverse mass spectra and multiplicity densities of charged and neutral kaons are reported for Au + Au collisions at √sNN = 130 GeV at RHIC. The spectra are exponential in transverse mass, with an inverse slope of about 280 MeV in central collisions. The multiplicity densities for these particles scale with the negative hadron pseudo-rapidity density. The charged kaon to pion ratios are K+/π− = 0.161± 0.002(stat) ± 0.024(syst) and K−/π− = 0.146± 0.002(stat) ± 0.022(syst) for the most central collisions. The K+/π− ratio is lower than the same ratio observed at the SPS while the K−/π− is higher than the SPS result. The ratios are enhanced by about 50% relative to p + p and p¯ + p collision data at similar energies.
We present STAR measurements of the azimuthal anisotropy parameter v2 and the binary-collision scaled centrality ratio RCP for kaons and lambdas ( Lambda + Lambda -bar) at midrapidity in Au+Au collisions at sqrt[sNN]=200 GeV. In combination, the v2 and RCP particle-type dependencies contradict expectations from partonic energy loss followed by standard fragmentation in vacuum. We establish pT ~ 5 GeV/c as the value where the centrality dependent baryon enhancement ends. The K0S and Lambda + Lambda -bar v2 values are consistent with expectations of constituent-quark-number scaling from models of hadron formation by parton coalescence or recombination.
The balance function is a new observable based on the principle that charge is locally conserved when particles are pair produced. Balance functions have been measured for charged particle pairs and identified charged pion pairs in Au+Au collisions at sqrt[sNN]=130 GeV at the Relativistic Heavy Ion Collider using STAR. Balance functions for peripheral collisions have widths consistent with model predictions based on a superposition of nucleon-nucleon scattering. Widths in central collisions are smaller, consistent with trends predicted by models incorporating late hadronization.
Azimuthal anisotropy (v2) and two-particle angular correlations of high pT charged hadrons have been measured in Au+Au collisions at sqrt[sNN]=130 GeV for transverse momenta up to 6 GeV/c, where hard processes are expected to contribute significantly. The two-particle angular correlations exhibit elliptic flow and a structure suggestive of fragmentation of high pT partons. The monotonic rise of v2(pT) for pT<2 GeV/c is consistent with collective hydrodynamical flow calculations. At pT>3 GeV/c, a saturation of v2 is observed which persists up to pT=6 GeV/c.
Azimuthal anisotropy (v2) and two-particle angular correlations of high pT charged hadrons have been measured in Au+Au collisions at sqrt[sNN]=130 GeV for transverse momenta up to 6 GeV/c, where hard processes are expected to contribute significantly. The two-particle angular correlations exhibit elliptic flow and a structure suggestive of fragmentation of high pT partons. The monotonic rise of v2(pT) for pT<2 GeV/c is consistent with collective hydrodynamical flow calculations. At pT>3 GeV/c, a saturation of v2 is observed which persists up to pT=6 GeV/c.
Measurements of the production of forward high-energy pi 0 mesons from transversely polarized proton collisions at sqrt[s]=200 GeV are reported. The cross section is generally consistent with next-to-leading order perturbative QCD calculations. The analyzing power is small at xF below about 0.3, and becomes positive and large at higher xF, similar to the trend in data at sqrt[s] <= 20 GeV. The analyzing power is in qualitative agreement with perturbative QCD model expectations. This is the first significant spin result seen for particles produced with pT>1 GeV/c at a polarized proton collider.
We report results on rho (770)0--> pi + pi - production at midrapidity in p+p and peripheral Au+Au collisions at sqrt[sNN]=200 GeV. This is the first direct measurement of rho (770)0--> pi + pi - in heavy-ion collisions. The measured rho 0 peak in the invariant mass distribution is shifted by ~40 MeV/c2 in minimum bias p+p interactions and ~70 MeV/c2 in peripheral Au+Au collisions. The rho 0 mass shift is dependent on transverse momentum and multiplicity. The modification of the rho 0 meson mass, width, and shape due to phase space and dynamical effects are discussed.
We report the first observations of the first harmonic (directed flow, v1) and the fourth harmonic (v4), in the azimuthal distribution of particles with respect to the reaction plane in Au+Au collisions at the BNL Relativistic Heavy Ion Collider (RHIC). Both measurements were done taking advantage of the large elliptic flow (v2) generated at RHIC. From the correlation of v2 with v1 it is determined that v2 is positive, or in-plane. The integrated v4 is about a factor of 10 smaller than v2. For the sixth (v6) and eighth (v8) harmonics upper limits on the magnitudes are reported.