Refine
Year of publication
- 2021 (2)
Document Type
- Article (2)
Language
- English (2)
Has Fulltext
- yes (2)
Is part of the Bibliography
- no (2)
Keywords
Nucleotide pools need to be constantly replenished in cancer cells to support cell proliferation. The synthesis of nucleotides requires glutamine and 5-phosphoribosyl-1-pyrophosphate produced from ribose-5-phosphate via the oxidative branch of the pentose phosphate pathway (ox-PPP). Both PPP and glutamine also play a key role in maintaining the redox status of cancer cells. Enhanced glutamine metabolism and increased glucose 6-phosphate dehydrogenase (G6PD) expression have been related to a malignant phenotype in tumors. However, the association between G6PD overexpression and glutamine consumption in cancer cell proliferation is still incompletely understood. In this study, we demonstrated that both inhibition of G6PD and glutamine deprivation decrease the proliferation of colon cancer cells and induce cell cycle arrest and apoptosis. Moreover, we unveiled that glutamine deprivation induce an increase of G6PD expression that is mediated through the activation of the nuclear factor (erythroid-derived 2)-like 2 (NRF2). This crosstalk between G6PD and glutamine points out the potential of combined therapies targeting oxidative PPP enzymes and glutamine catabolism to combat colon cancer.
Combinatorial CRISPR-Cas screens have advanced the mapping of genetic interactions, but their experimental scale limits the number of targetable gene combinations. Here, we describe 3Cs multiplexing, a rapid and scalable method to generate highly diverse and uniformly distributed combinatorial CRISPR libraries. We demonstrate that the library distribution skew is the critical determinant of its required screening coverage. By circumventing iterative cloning of PCR-amplified oligonucleotides, 3Cs multiplexing facilitates the generation of combinatorial CRISPR libraries with low distribution skews. We show that combinatorial 3Cs libraries can be screened with minimal coverages, reducing associated efforts and costs at least 10-fold. We apply a 3Cs multiplexing library targeting 12,736 autophagy gene combinations with 247,032 paired gRNAs in viability and reporter-based enrichment screens. In the viability screen, we identify, among others, the synthetic lethal WDR45B-PIK3R4 and the proliferation-enhancing ATG7-KEAP1 genetic interactions. In the reporter-based screen, we identify over 1,570 essential genetic interactions for autophagy flux, including interactions among paralogous genes, namely ATG2A-ATG2B, GABARAP-MAP1LC3B and GABARAP-GABARAPL2. However, we only observe few genetic interactions within paralogous gene families of more than two members, indicating functional compensation between them. This work establishes 3Cs multiplexing as a platform for genetic interaction screens at scale.