Refine
Language
- English (7)
Has Fulltext
- yes (7)
Is part of the Bibliography
- no (7)
Institute
- Physik (7)
Although iron-based catalysts are regarded as a promising alternative to precious metal catalysts, their precise electronic structures during catalysis still pose challenges for computational descriptions. A particularly urgent question is the influence of the environment on the electronic structure, and how to describe this properly with computational methods. Here, we study an iron porphyrin chloride complex adsorbed on a graphene sheet using density functional theory calculations to detail how much the electronic structure is influenced by the presence of a graphene layer. Our results indicate that weak interactions due to van der Waals forces dominate between the porphyrin complex and graphene, and only a small amount of charge is transferred between the two entities. Furthermore, the interplay of the ligand field environment, strong p − d hybridization, and correlation effects within the complex are strongly involved in determining the spin state of the iron ion. By bridging molecular chemistry and solid state physics, this study provides first steps towards a joint analysis of the properties of iron-based catalysts from first principles.
We investigate the magnetism of a previously unexplored distorted spin-1/2 kagome model consisting of three symmetry-inequivalent nearest-neighbor antiferromagnetic Heisenberg couplings Jhexagon, J and J', and uncover a rich ground state phase diagram even at the classical level. Using analytical arguments and numerical techniques we identify a collinear Q = 0 magnetic phase, two unusual non-collinear coplanar Q = (1/3,1/3) phases and a classical spin liquid phase with a degenerate manifold of non-coplanar ground states, resembling the jammed spin liquid phase found in the context of a bond-disordered kagome antiferromagnet. We further show with density functional theory calculations that the recently synthesized Y-kapellasite Y3Cu9(OH)19Cl8 is a realization of this model and predict its ground state to lie in the region of Q = (1/3,1/3) order, which remains stable even after inclusion of quantum fluctuation effects within variational Monte Carlo and pseudofermion functional renormalization group. The presented model opens a new direction in the study of kagome antiferromagnets.
We investigate the magnetism of a previously unexplored distorted spin-1/2 kagome model consisting of three symmetry-inequivalent nearest-neighbor antiferromagnetic Heisenberg couplings and uncover a rich ground state phase diagram even at the classical level. Using analytical arguments and numerical techniques we identify a collinear Q⃗ =0 magnetic phase, two unusual non-collinear coplanar Q⃗ =(1/3,1/3) phases and a classical spin liquid phase with a degenerate manifold of non-coplanar ground states, resembling the jammed spin liquid phase found in the context of a bond-disordered kagome antiferromagnet. We further show with density functional theory calculations that the recently synthesized Y-kapellasite Y3Cu9(OH)19Cl8 is a realization of this model and predict its ground state to lie in the region of Q⃗ =(1/3,1/3) order, which remains stable even after inclusion of quantum fluctuation effects within variational Monte Carlo and pseudofermion functional renormalization group. Interestingly, the excitation spectrum of Y-kapellasite lies between that of an underlying triangular lattice of hexagons and a kagome lattice of trimers. The presented model opens a new direction in the study of kagome antiferromagnets.
We investigate the magnetism of a previously unexplored distorted spin-1/2 kagome model consisting of three symmetry-inequivalent nearest-neighbor antiferromagnetic Heisenberg couplings Jhexagon, J and J', and uncover a rich ground state phase diagram even at the classical level. Using analytical arguments and numerical techniques we identify a collinear Q = 0 magnetic phase, two unusual non-collinear coplanar Q = (1/3,1/3) phases and a classical spin liquid phase with a degenerate manifold of non-coplanar ground states, resembling the jammed spin liquid phase found in the context of a bond-disordered kagome antiferromagnet. We further show with density functional theory calculations that the recently synthesized Y-kapellasite Y3Cu9(OH)19Cl8 is a realization of this model and predict its ground state to lie in the region of Q = (1/3,1/3) order, which remains stable even after inclusion of quantum fluctuation effects within variational Monte Carlo and pseudofermion functional renormalization group. The presented model opens a new direction in the study of kagome antiferromagnets.
RuO₂: a puzzle to be solved
(2023)
Altermagnetism is a topic that has lately been gaining attention and the RuO2 compound is among one of the most studied altermagnetic candidates. However, the survey of available literature on RuO2 properties suggests that there is no consensus about the magnetism of this material. By performing density functional theory calculations, we show that the electronic properties of stoichiometric RuO2 are described in terms of a smaller Hubbard U within DFT+U than the value required to have magnetism. We further argue that Ru vacancies can actually aid the formation of a magnetic state in RuO2. This in turn suggests that a characterization of the amount of Ru vacancies in experimental samples might help the resolution of the controversy between the different experimental results.
Controlling and understanding electron correlations in quantum matter is one of the most challenging tasks in materials engineering. In the past years a plethora of new puzzling correlated states have been found by carefully stacking and twisting two-dimensional van der Waals materials of different kind. Unique to these stacked structures is the emergence of correlated phases not foreseeable from the single layers alone. In Ta-dichalcogenide heterostructures made of a good metallic “1H”- and a Mott insulating “1T”-layer, recent reports have evidenced a cross-breed itinerant and localized nature of the electronic excitations, similar to what is typically found in heavy fermion systems. Here, we put forward a new interpretation based on first-principles calculations which indicates a sizeable charge transfer of electrons (0.4-0.6 e) from 1T to 1H layers at an elevated interlayer distance. We accurately quantify the strength of the interlayer hybridization which allows us to unambiguously determine that the system is much closer to a doped Mott insulator than to a heavy fermion scenario. Ta-based heterolayers provide therefore a new ground for quantum-materials engineering in the regime of heavily doped Mott insulators hybridized with metallic states at a van der Waals distance.
Electronic and magnetic properties of the RuX3 (X=Cl, Br, I) family: two siblings - and a cousin?
(2022)
Motivated by reports of metallic behavior in the recently synthesized RuI3, in contrast to the Mott-insulating nature of the actively discussed α-RuCl3, as well as RuBr3, we present a detailed comparative analysis of the electronic and magnetic properties of this family of trihalides. Using a combination of first-principles calculations and effective-model considerations, we conclude that RuI3, similarly to the other two members, is most probably on the verge of a Mott insulator, but with much smaller magnetic moments and strong magnetic frustration. We predict the ideal pristine crystal of RuI3 to have a nearly vanishing conventional nearest-neighbor Heisenberg interaction and to be a quantum spin liquid candidate of a possibly different kind than the Kitaev spin liquid. In order to understand the apparent contradiction to the reported resistivity ρ, we analyze the experimental evidence for all three compounds and propose a scenario for the observed metallicity in existing samples of RuI3. Furthermore, for the Mott insulator RuBr3, we obtain a magnetic Hamiltonian of a similar form to that in the much-discussed α-RuCl3 and show that this Hamiltonian is in agreement with experimental evidence in RuBr3.