Refine
Year of publication
Language
- English (22)
Has Fulltext
- yes (22)
Is part of the Bibliography
- no (22)
Keywords
- Biogeography (2)
- community ecology (2)
- Adaptation (1)
- Agyriales (1)
- Altitudinal (1)
- Ascomycota (1)
- Climate change (1)
- Coevolution (1)
- Community ecology (1)
- DNA metabarcoding (1)
Panmixia and dispersal from the Mediterranean Basin to Macaronesian Islands of a macrolichen species
(2017)
The Mediterranean region, comprising the Mediterranean Basin and the Macaronesian Islands, represents a center of diversification for many organisms. The genetic structure and connectivity of mainland and island microbial populations has been poorly explored, in particular in the case of symbiotic fungi. Here we investigated genetic diversity and spatial structure of the obligate outcrossing lichen-forming fungus Parmelina carporrhizans in the Mediterranean region. Using eight microsatellite and mating-type markers we showed that fungal populations are highly diverse but lack spatial structure. This is likely due to high connectivity and long distance dispersal of fungal spores. Consistent with low levels of linkage disequilibrium and lack of clonality, we detected both mating-type idiomorphs in all populations. Furthermore we showed that the Macaronesian Islands are the result of colonization from the Mediterranean Basin. The unidirectional gene flow, though, seemed not to be sufficient to counterbalance the effects of drift, resulting in comparatively allelic poor peripheral populations. Our study is the first to shed light on the high connectivity and lack of population structure in natural populations of a strictly sexual lichen fungus. Our data further support the view of the Macaronesian Islands as the end of the colonization road for this symbiotic ascomycete.
In the last decades, natural products from lichens have gained more interest for pharmaceutical application due to the broad range of their biological activity. However, isolation of the compounds of interest directly from the lichen is neither feasible nor sustainable due to slow growth of many lichens. In order to develop a pipeline for heterologous expression of lichen biosynthesis gene clusters and thus the sustainable production of their bioactive compounds we have identified and characterized the phosphopantheteinyl transferase (PPTase) EppA from the lichen Evernia prunastri. The Sfp-type PPTase EppA was functionally characterized through heterologous expression in E. coli using the production of the blue pigment indigoidine as readout and by complementation of a lys5 deletion in S. cerevisiae.
Tree bark constitutes an ideal habitat for microbial communities, because it is a stable substrate, rich in micro-niches. Bacteria, fungi, and terrestrial microalgae together form microbial communities, which in turn support more bark-associated organisms, such as mosses, lichens, and invertebrates, thus contributing to forest biodiversity. We have a limited understanding of the diversity and biotic interactions of the bark-associated microbiome, as investigations have mainly focused on agriculturally relevant systems and on single taxonomic groups. Here we implemented a multi-kingdom metabarcoding approach to analyze diversity and community structure of the green algal, bacterial, and fungal components of the bark-associated microbial communities of beech, the most common broadleaved tree of Central European forests. We identified the most abundant taxa, hub taxa, and co-occurring taxa. We found that tree size (as a proxy for age) is an important driver of community assembly, suggesting that environmental filtering leads to less diverse fungal and algal communities over time. Conversely, forest management intensity had negligible effects on microbial communities on bark. Our study suggests the presence of undescribed, yet ecologically meaningful taxa, especially in the fungi, and highlights the importance of bark surfaces as a reservoir of microbial diversity. Our results constitute a first, essential step toward an integrated framework for understanding microbial community assembly processes on bark surfaces, an understudied habitat and neglected component of terrestrial biodiversity. Finally, we propose a cost-effective sampling strategy to study bark-associated microbial communities across large spatial or environmental scales.
Background: Many fungal species occur across a variety of habitats. Particularly lichens, fungi forming symbioses with photosynthetic partners, have evolved remarkable tolerances for environmental extremes. Despite their ecological importance and ubiquity, little is known about the genetic basis of adaption in lichen populations. Here we studied patterns of genome-wide differentiation in the lichen-forming fungus Lasallia pustulata along an altitudinal gradient in the Mediterranean region. We resequenced six populations as pools and identified highly differentiated genomic regions. We then detected gene-environment correlations while controlling for shared population history and pooled sequencing bias, and performed ecophysiological experiments to assess fitness differences of individuals from different environments.
Results: We detected two strongly differentiated genetic clusters linked to Mediterranean and temperate-oceanic climate, and an admixture zone, which coincided with the transition between the two bioclimates. High altitude individuals showed ecophysiological adaptations to wetter and more shaded conditions. Highly differentiated genome regions contained a number of genes associated with stress response, local environmental adaptation, and sexual reproduction.
Conclusions: Taken together our results provide evidence for a complex interplay between demographic history and spatially varying selection acting on a number of key biological processes, suggesting a scenario of ecological speciation.
Species recognition in lichen-forming fungi has been a challenge because of unsettled species concepts, few taxonomically relevant traits, and limitations of traditionally used morphological and chemical characters for identifying closely related species. Here we analyze species diversity in the cosmopolitan genus Protoparmelia s.l. The ~25 described species in this group occur across diverse habitats from the boreal -arctic/alpine to the tropics, but their relationship to each other remains unexplored. In this study, we inferred the phylogeny of 18 species currently assigned to this genus based on 160 specimens and six markers: mtSSU, nuLSU, ITS, RPB1, MCM7, and TSR1. We assessed the circumscription of species-level lineages in Protoparmelia s. str. using two coalescent-based species delimitation methods – BP&P and spedeSTEM. Our results suggest the presence of a tropical and an extra-tropical lineage, and eleven previously unrecognized distinct species-level lineages in Protoparmelia s. str. Several cryptic lineages were discovered as compared to phenotype-based species delimitation. Many of the putative species are supported by geographic evidence.
The lichen-forming genus Pertusaria under its current circumscription is polyphyletic and its phylogenetic affiliations are uncertain. Here we study the species of the genera Pertusaria and Varicellaria which containlecanoric acid as major constituent, have disciform apothecia, strongly amyloid asci, non-amyloid hymenial gel, 1-2-spored asci, and 1- or 2-celled ascospores with thick, 1-layered walls. We infer phylogenetic relationships using maximum likelihood and Bayesian analyses based on four molecular loci (mtSSU, nuLSU rDNA, and the protein-coding, nuclear RPB1 and MCM7 genes). Our results show that the lecanoric acid-containing species form a well-supported, monophyletic group, which is only distantly related to Pertusaria s.str. The phylogenetic position of this clade is unclear, but placement in Pertusaria s.str. is rejected using alternative hypothesis testing. The circumscription of the genus Varicellaria is enlarged to also include species with non-septate ascospores. Seven species are accepted in the genus: Varicellaria culbersonii (Vězda) Schmitt & Lumbsch, comb. nov., Varicellaria hemisphaerica (Flörke) Schmitt & Lumbsch, comb. nov., Varicellaria kasandjeffii (Szatala) Schmitt & Lumbsch, comb. nov., Varicellaria lactea (L.) Schmitt & Lumbsch, comb. nov., Varicellaria philippina (Vain.) Schmitt & Lumbsch, comb. nov., Varicellaria rhodocarpa (Körb.) Th. Fr., and Varicellaria velata (Turner) Schmitt & Lumbsch, comb. nov. A key to the species of Varicellaria is provided.
Lichen-forming fungi are symbiotic organisms that synthesize unique natural products with potential for new drug leads. Here, we explored the pharmacological activity of six lichen extracts (Evernia prunastri, Pseudevernia furfuracea, Umbilicaria pustulata, Umbilicaria crustulosa, Flavoparmelia caperata, Platismatia glauca) in the context of cancer and inflammation using a comprehensive set of 11 functional and biochemical in vitro screening assays. We assayed intracellular Ca2+ levels and cell migration. For cancer, we measured tumor cell proliferation, cell cycle distribution and apoptosis, as well as the angiogenesis-associated proliferation of endothelial cells (ECs). Targeting inflammation, we assayed leukocyte adhesion onto ECs, EC adhesion molecule expression, as well as nitric oxide production and prostaglandin (PG)E2 synthesis in leukocytes. Remarkably, none of the lichen extracts showed any detrimental influence on the viability of ECs. We showed for the first time that extracts of F. caperata induce Ca2+ signaling. Furthermore, extracts from E. prunastri, P. furfuracea, F. caperata, and P. glauca reduced cell migration. Interestingly, F. caperata extracts strongly decreased tumor cell survival. The proliferation of ECs was significantly reduced by E. prunastri, P. furfuracea, and F. caperata extracts. The extracts did not inhibit the activity of inflammatory processes in ECs. However, the pro-inflammatory activation of leukocytes was inhibited by extracts from E. prunastri, P. furfuracea, F. caperata, and P. glauca. After revealing the potential biological activities of lichen extracts by an array of screening tests, a correlation analysis was performed to evaluate particular roles of abundant lichen secondary metabolites, such as atranorin, physodic acid, and protocetraric acid as well as usnic acid in various combinations. Overall, some of the lichen extracts tested in this study exhibit significant pharmacological activity in the context of inflammation and/or cancer, indicating that the group lichen-forming fungi includes promising members for further testing.
Biosynthetic gene content of the "Perfume Lichens" Evernia prunastri and Pseudevernia furfuracea
(2019)
Lichen-forming fungi produce a vast number of unique natural products with a wide variety of biological activities and human uses. Although lichens have remarkable potential in natural product research and industry, the molecular mechanisms underlying the biosynthesis of lichen metabolites are poorly understood. Here we use genome mining and comparative genomics to assess biosynthetic gene clusters and their putative regulators in the genomes of two lichen-forming fungi, which have substantial commercial value in the perfume industry, Evernia prunastri and Pseudevernia furfuracea. We report a total of 80 biosynthetic gene clusters (polyketide synthases (PKS), non-ribosomal peptide synthetases and terpene synthases) in E. prunastri and 51 in P. furfuracea. We present an in-depth comparison of 11 clusters, which show high homology between the two species. A ketosynthase (KS) phylogeny shows that biosynthetic gene clusters from E. prunastri and P. furfuracea are widespread across the Fungi. The phylogeny includes 15 genomes of lichenized fungi and all fungal PKSs with known functions from the MIBiG database. Phylogenetically closely related KS domains predict not only similar PKS architecture but also similar cluster architecture. Our study highlights the untapped biosynthetic richness of lichen-forming fungi, provides new insights into lichen biosynthetic pathways and facilitates heterologous expression of lichen biosynthetic gene clusters.
Pertusarialean lichens include more than 300 species belonging to several independent phylogenetic lineages. Only some of these phylogenetic clades have been comprehensively sampled for molecular data, and formally described as genera. Here we present a taxonomic treatment of a group of pertusarialean lichens formerly known as "Pertusaria amara-group", "Monomurata-group", or "Variolaria-group", which includes widespread and well-known taxa such as P. amara, P. albescens, or P. ophthalmiza. We generated a 6-locus data set with 79 OTUs representing 75 species. The distinction of the Variolaria clade is supported and consequently, the resurrection of the genus Lepra is followed. Thirty-five new combinations into Lepra are proposed and the new species Lepra austropacifica is described from mangroves in the South Pacific. Lepra is circumscribed to include species with disciform ascomata, a weakly to non-amyloid hymenial gel, strongly amyloid asci without clear apical amyloid structures, containing 1 or 2, single-layered, thin-walled ascospores. Chlorinated xanthones are not present, but thamnolic and picrolichenic acids occur frequently, as well as orcinol depsides. Seventy-one species are accepted in the genus. Although the distinction of the genus from Pertusaria is strongly supported, the relationships of Lepra remain unresolved and the genus is tentatively placed in Pertusariales incertae sedis.
The implementation of HTS (high-throughput sequencing) approaches is rapidly changing our understanding of the lichen symbiosis, by uncovering high bacterial and fungal diversity, which is often host-specific. Recently, HTS methods revealed the presence of multiple photobionts inside a single thallus in several lichen species. This differs from Sanger technology, which typically yields a single, unambiguous algal sequence per individual. Here we compared HTS and Sanger methods for estimating the diversity of green algal symbionts within lichen thalli using 240 lichen individuals belonging to two species of lichen-forming fungi. According to HTS data, Sanger technology consistently yielded the most abundant photobiont sequence in the sample. However, if the second most abundant photobiont exceeded 30% of the total HTS reads in a sample, Sanger sequencing generally failed. Our results suggest that most lichen individuals in the two analyzed species, Lasallia hispanica and L. pustulata, indeed contain a single, predominant green algal photobiont. We conclude that Sanger sequencing is a valid approach to detect the dominant photobionts in lichen individuals and populations. We discuss which research areas in lichen ecology and evolution will continue to benefit from Sanger sequencing, and which areas will profit from HTS approaches to assessing symbiont diversity.