Refine
Year of publication
Language
- English (30)
Has Fulltext
- yes (30)
Is part of the Bibliography
- no (30)
Keywords
- orthology (2)
- Adhesion (1)
- Arabidopsis (1)
- Biodiversity (1)
- Brachiopoda (1)
- Brachiozoa (1)
- Bryozoa (1)
- Cell biology (1)
- Cetraria aculeata (1)
- Collembola (1)
Institute
- Biowissenschaften (25)
- Senckenbergische Naturforschende Gesellschaft (12)
- Biodiversität und Klima Forschungszentrum (BiK-F) (10)
- Medizin (6)
- Exzellenzcluster Makromolekulare Komplexe (3)
- Institut für Ökologie, Evolution und Diversität (3)
- Biochemie und Chemie (1)
- Buchmann Institut für Molekulare Lebenswissenschaften (BMLS) (1)
- Frankfurt Institute for Advanced Studies (FIAS) (1)
Bacterial and fungal toll-like receptor activation elicits type I IFN responses in mast cells
(2021)
Next to their role in IgE-mediated allergic diseases and in promoting inflammation, mast cells also have antiinflammatory functions. They release pro- as well as antiinflammatory mediators, depending on the biological setting. Here we aimed to better understand the role of mast cells during the resolution phase of a local inflammation induced with the Toll-like receptor (TLR)-2 agonist zymosan. Multiple sequential immunohistology combined with a statistical neighborhood analysis showed that mast cells are located in a predominantly antiinflammatory microenvironment during resolution of inflammation and that mast cell-deficiency causes decreased efferocytosis in the resolution phase. Accordingly, FACS analysis showed decreased phagocytosis of zymosan and neutrophils by macrophages in mast cell-deficient mice. mRNA sequencing using zymosan-induced bone marrow-derived mast cells (BMMC) revealed a strong type I interferon (IFN) response, which is known to enhance phagocytosis by macrophages. Both, zymosan and lipopolysaccharides (LPS) induced IFN-β synthesis in BMMCs in similar amounts as in bone marrow derived macrophages. IFN-β was expressed by mast cells in paws from naïve mice and during zymosan-induced inflammation. As described for macrophages the release of type I IFNs from mast cells depended on TLR internalization and endosome acidification. In conclusion, mast cells are able to produce several mediators including IFN-β, which are alone or in combination with each other able to regulate the phagocytotic activity of macrophages during resolution of inflammation.
Heat stress transcription factors (HSFs) regulate transcriptional response to a large number of environmental influences, such as temperature fluctuations and chemical compound applications. Plant HSFs represent a large and diverse gene family. The HSF members vary substantially both in gene expression patterns and molecular functions. HEATSTER is a web resource for mining, annotating, and analyzing members of the different classes of HSFs in plants. A web-interface allows the identification and class assignment of HSFs, intuitive searches in the database and visualization of conserved motifs, and domains to classify novel HSFs.
Background: Within the complex metazoan phylogeny, the relationships of the three lophophorate lineages, ectoprocts, brachiopods and phoronids, are particularly elusive. To shed further light on this issue, we present phylogenomic analyses of 196 genes from 58 bilaterian taxa, paying particular attention to the influence of compositional heterogeneity.
Results: The phylogenetic analyses strongly support the monophyly of Lophophorata and a sister-group relationship between Ectoprocta and Phoronida. Our results contrast previous findings based on rDNA sequences and phylogenomic datasets which supported monophyletic Polyzoa (= Bryozoa sensu lato) including Ectoprocta, Entoprocta and Cycliophora, Brachiozoa including Brachiopoda and Phoronida as well as Kryptrochozoa including Brachiopoda, Phoronida and Nemertea, thus rendering Lophophorata polyphyletic. Our attempts to identify the causes for the conflicting results revealed that Polyzoa, Brachiozoa and Kryptrochozoa are supported by character subsets with deviating amino acid compositions, whereas there is no indication for compositional heterogeneity in the character subsets supporting the monophyly of Lophophorata.
Conclusion: Our results indicate that the support for Polyzoa, Brachiozoa and Kryptrochozoa gathered so far is likely an artifact caused by compositional bias. The monophyly of Lophophorata implies that the horseshoe-shaped mesosomal lophophore, the tentacular feeding apparatus of ectoprocts, phoronids and brachiopods is, indeed, a synapomorphy of the lophophorate lineages. The same may apply to radial cleavage. However, among phoronids also spiral cleavage is known. This suggests that the cleavage pattern is highly plastic and has changed several times within lophophorates. The sister group relationship of ectoprocts and phoronids is in accordance with the interpretation of the eversion of a ventral invagination at the beginning of metamorphosis as a common derived feature of these taxa.
The taxon Syndermata comprises the biologically interesting wheel animals (“Rotifera”: Bdelloidea + Monogononta + Seisonidea) and thorny-headed worms (Acanthocephala), and is central for testing superordinate phylogenetic hypotheses (Platyzoa, Gnathifera) in the metazoan tree of life. Recent analyses of syndermatan phylogeny suggested paraphyly of Eurotatoria (free-living bdelloids and monogononts) with respect to endoparasitic acanthocephalans. Data of epizoic seisonids, however, were absent, which may have affected the branching order within the syndermatan clade. Moreover, the position of Seisonidea within Syndermata should help in understanding the evolution of acanthocephalan endoparasitism. Here, we report the first phylogenomic analysis that includes all four higher-ranked groups of Syndermata. The analyzed data sets comprise new transcriptome data for Seison spec. (Seisonidea), Brachionus manjavacas (Monogononta), Adineta vaga (Bdelloidea), and Paratenuisentis ambiguus (Acanthocephala). Maximum likelihood and Bayesian trees for a total of 19 metazoan species were reconstructed from up to 410 functionally diverse proteins. The results unanimously place Monogononta basally within Syndermata, and Bdelloidea appear as the sister group to a clade comprising epizoic Seisonidea and endoparasitic Acanthocephala. Our results support monophyly of Syndermata, Hemirotifera (Bdelloidea + Seisonidea + Acanthocephala), and Pararotatoria (Seisonidea + Acanthocephala), rejecting monophyly of traditional Rotifera and Eurotatoria. This serves as an indication that early acanthocephalans lived epizoically or as ectoparasites on arthropods, before their complex lifecycle with arthropod intermediate and vertebrate definite hosts evolved.
Calmodulins (CaMs) are important mediators of Ca2+ signals that are found ubiquitously in all eukaryotic organisms. Plants contain a unique family of calmodulin-like proteins (CMLs) that exhibit greater sequence variance compared to canonical CaMs. The Arabidopsis thaliana proteins AtCML4 and AtCML5 are members of CML subfamily VII and possess a CaM domain comprising the characteristic double pair of EF-hands, but they are distinguished from other members of this subfamily and from canonical CaMs by an N-terminal extension of their amino acid sequence. Transient expression of yellow fluorescent protein-tagged AtCML4 and AtCML5 under a 35S-promoter in Nicotiana benthamiana leaf cells revealed a spherical fluorescence pattern. This pattern was confirmed by transient expression in Arabidopsis protoplasts under the native promoter. Co-localization analyses with various endomembrane marker proteins suggest that AtCML4 and AtCML5 are localized to vesicular structures in the interphase between Golgi and the endosomal system. Further studies revealed AtCML5 to be a single-pass membrane protein that is targeted into the endomembrane system by an N-terminal signal anchor sequence. Self-assembly green fluorescent protein and protease protection assays support a topology with the CaM domain exposed to the cytosolic surface and not the lumen of the vesicles, indicating that AtCML5 could sense Ca 2+ signals in the cytosol. Phylogenetic analysis suggests that AtCML4 and AtCML5 are closely related paralogues originating from a duplication event within the Brassicaceae family. CML4/5-like proteins seem to be universally present in eudicots but are absent in some monocots. Together these results show that CML4/5-like proteins represent a flowering plant-specific subfamily of CMLs with a potential function in vesicle transport within the plant endomembrane system.
Acinetobacter baumannii virulence is mediated by the concerted action of three phospholipases D
(2015)
Acinetobacter baumannii causes a broad range of opportunistic infections in humans. Its success as an emerging pathogen is due to a combination of increasing antibiotic resistance, environmental persistence and adaptation to the human host. To date very little is known about the molecular basis of the latter. Here we demonstrate that A. baumannii can use phosphatidylcholine, an integral part of human cell membranes, as sole carbon and energy source. We report on the identification of three phospholipases belonging to the PLD superfamily. PLD1 and PLD2 appear restricted to the bacteria and display the general features of bacterial phospholipases D. They possess two PLDc_2 PFAM domains each encompassing the HxKx4Dx6GS/GGxN (HKD) motif necessary for forming the catalytic core. The third candidate, PLD3, is found in bacteria as well as in eukaryotes and harbours only one PLDc_2 PFAM domain and one conserved HKD motif, which however do not overlap. Employing a markerless mutagenesis system for A. baumannii ATCC 19606T, we generated a full set of PLD knock-out mutants. Galleria mellonella infection studies as well as invasion experiments using A549 human lung epithelial cells revealed that the three PLDs act in a concerted manner as virulence factors and are playing an important role in host cell invasion.
Premise of the study: Polymorphic microsatellite markers were developed for the lichen species Cetraria aculeata (Parmeliaceae) to study fine-scale population diversity and phylogeographic structure.
Methods and Results: Using Illumina HiSeq and MiSeq, 15 fungus-specific microsatellite markers were developed and tested on 81 specimens from four populations from Spain. The number of alleles ranged from four to 13 alleles per locus with a mean of 7.9, and average gene diversities varied from 0.40 to 0.73 over four populations. The amplification rates of 10 markers (CA01– CA10) in populations of C. aculeata exceeded 85%. The markers also amplified across a range of closely related species, except for locus CA05, which did not amplify in C. australiensis and C. "panamericana," and locus CA10 which did not amplify in C. australiensis.
Conclusions: The identified microsatellite markers will be used to study the genetic diversity and phylogeographic structure in populations of C. aculeata in western Eurasia.
Ribosome biogenesis is fundamental for cellular life, but surprisingly little is known about the underlying pathway. In eukaryotes a comprehensive collection of experimentally verified ribosome biogenesis factors (RBFs) exists only for Saccharomyces cerevisiae. Far less is known for other fungi, animals or plants, and insights are even more limited for archaea. Starting from 255 yeast RBFs, we integrated ortholog searches, domain architecture comparisons and, in part, manual curation to investigate the inventories of RBF candidates in 261 eukaryotes, 26 archaea and 57 bacteria. The resulting phylogenetic profiles reveal the evolutionary ancestry of the yeast pathway. The oldest core comprising 20 RBF lineages dates back to the last universal common ancestor, while the youngest 20 factors are confined to the Saccharomycotina. On this basis, we outline similarities and differences of ribosome biogenesis across contemporary species. Archaea, so far a rather uncharted domain, possess 38 well-supported RBF candidates of which some are known to form functional sub-complexes in yeast. This provides initial evidence that ribosome biogenesis in eukaryotes and archaea follows similar principles. Within eukaryotes, RBF repertoires vary considerably. A comparison of yeast and human reveals that lineage-specific adaptation via RBF exclusion and addition characterizes the evolution of this ancient pathway.
Translation fidelity and efficiency require multiple ribosomal (r)RNA modifications that are mostly mediated by small nucleolar (sno)RNPs during ribosome production. Overlapping basepairing of snoRNAs with pre-rRNAs often necessitates sequential and efficient association and dissociation of the snoRNPs, however, how such hierarchy is established has remained unknown so far. Here, we identify several late-acting snoRNAs that bind pre-40S particles in human cells and show that their association and function in pre-40S complexes is regulated by the RNA helicase DDX21. We map DDX21 crosslinking sites on pre-rRNAs and show their overlap with the basepairing sites of the affected snoRNAs. While DDX21 activity is required for recruitment of the late-acting snoRNAs SNORD56 and SNORD68, earlier snoRNAs are not affected by DDX21 depletion. Together, these observations provide an understanding of the timing and ordered hierarchy of snoRNP action in pre-40S maturation and reveal a novel mode of regulation of snoRNP function by an RNA helicase in human cells.