Refine
Language
- English (5)
Has Fulltext
- yes (5)
Is part of the Bibliography
- no (5)
Keywords
- Array seismology (1)
- Cape Verde (1)
- Fogo (1)
- Fogo volcano (1)
- Magma migration (1)
- Mantle earthquakes (1)
- Volcano-tectonic earthquakes (1)
Institute
During the first two days of August 2016 a seismic crisis occurred on Brava, Cabo Verde, which – according to observations based on a local seismic network – was characterized by more than a thousand volcano-seismic signals. Brava is considered an active volcanic island, although it has not experienced any historic eruptions. Seismicity significantly exceeded the usual level during the crisis. We report on results based on data from a temporary seismic-array deployment on the neighbouring island of Fogo at a distance of about 35 km. The array was in operation from October 2015 to December 2016 and recorded a total of 1343 earthquakes in the region of Fogo and Brava; 355 thereof were localized. On 1 and 2 August we observed 54 earthquakes, 25 of which could be located beneath Brava. We further evaluate the observations with regards to possible precursors to the crisis and its continuation. Our analysis shows a significant variation in seismicity around Brava, but no distinct precursory pattern. However, the observations suggest that similar earthquake swarms commonly occur close to Brava. The results further confirm the advantages of seismic arrays as tools for the remote monitoring of regions with limited station coverage or access.
During the first two days of August 2016 a seismic crisis occurred on Brava, Cape Verde, which – according to observations based on a local seismic network – was characterized by more than thousand volcano–seismic signals. Brava is considered an active volcanic island, although it has not experienced any historic eruptions. Seismicity significantly exceeded the usual level during the crisis. We report on results based on data from a temporary seismic–array deployment on the neighbouring island of Fogo at a distance of about 35 km. The array was in operation from October 2015 to December 2016 and recorded a total of 1343 earthquakes, 355 thereof were localized. On 1 and 2 August we observed 54 earthquakes, 25 of which could be located beneath Brava. We further evaluate the observations with regards to possible precursors to the crisis and its continuation. Our analysis shows a migration of seismicity around Brava, but no distinct precursory pattern. However, the observations suggest that similar earthquake swarms commonly occur close to Brava. The results further confirm the advantages of seismic arrays as tools for the remote monitoring of regions with limited station coverage or access.
Seismic arrays provide tools for the localization of events without clear phases or events outside the network, where the station coverage prohibits classical localization techniques. Beam forming allows the determination of the direction (back azimuth) and horizontal (apparent) velocity of an incoming wavefront. Here we combine multiple arrays to retrieve event epicentres from the area of intersecting beams without the need to specify a velocity model. The analysis is performed in the time domain, which allows selecting a relatively narrow time window around the phase of interest while preserving frequency bandwidth. This technique is applied to earthquakes and hybrid events in the region of Fogo and Brava, two islands of the southern chain of the Cape Verde archipelago. The results show that the earthquakes mainly originate near Brava, whereas the hybrid events are located on Fogo. By multiple-event beam stacking we are able to further constrain the epicentral locations of the hybrid events in the northwestern part of the collapse scar of Fogo. In previous studies, these events were attributed to shallow hydrothermal processes. However, we obtain relatively high apparent velocities at the arrays, pointing to either deeper sources or complex ray paths. For a better understanding of possible errors of the multi-array analysis, we also compare slowness values obtained from the array analysis with those derived from earthquake locations from classical (local network) localizations. In general, the results agree well. Nevertheless, some systematic deviations of the array-derived back-azimuth and slowness values occur that can be quantified for certain event locations.
Seismic arrays provide tools for the localization of events without clear phases or events outside the network, where the station coverage prohibits classical localization techniques. Beam forming allows the determination of the direction (back azimuth) and horizontal (apparent) velocity of an incoming wavefront. Here we combine multiple arrays to retrieve event epicentres from the area of intersecting beams without the need to specify a velocity model. The analysis is performed in the time domain, which allows selecting a relatively narrow time window around the phase of interest while preserving frequency bandwidth. This technique is applied to earthquakes and hybrid events in the region of Fogo and Brava, two islands of the southern chain of the Cape Verde archipelago. The results show that the earthquakes mainly originate near Brava, whereas the hybrid events are located on Fogo. By multiple-event beam stacking we are able to further constrain the epicentral locations of the hybrid events in the northwestern part of the collapse scar of Fogo. In previous studies, these events were attributed to shallow hydrothermal processes. However, we obtain relatively high apparent velocities at the arrays, pointing to either deeper sources or complex ray paths. For a better understanding of possible errors of the multi-array analysis, we also compare slowness values obtained from the array analysis with those derived from earthquake locations from classical (local network) localizations. In general, the results agree well. Nevertheless, some systematic deviations of the array-derived back-azimuth and slowness values occur that can be quantified for certain event locations.
Highlights
• Subcrustal earthquakes detected beneath Fogo volcano, Cape Verde.
• At the focal depth of 40 km temperatures are likely too high for brittle failure.
• The earthquakes may originate from magma injection into a deep subcrustal reservoir.
• This observation indicates a distinct magma supply system of Fogo volcano.
Abstract
Fogo volcano belongs to the Cape Verde hotspot and its most recent eruption occurred from November 2014 to February 2015. From January to December 2016 we operated a temporary seismic network and array on Fogo and were able to locate 289 earthquakes in total. Array analysis shows that most of the events occur within the crust at distances >25 km near the neighboring island of Brava. However, on 15th August 2016 the network recorded an isolated cluster of >20 earthquakes, 13 of which could be located beneath the southern part of Fogo. The differences between S- and P-wave arrival times at steep incidence clearly indicate focal depths between approximately 38 and 44 km whereas receiver-function analyses place the Moho discontinuity at depths between 11 and 14 km. Thus, the earthquakes are located well within the upper mantle directly beneath Fogo. In view of the elevated upper-mantle temperatures within a hotspot regime, we propose that fracturing induced by magmatic injection is the most likely cause for the observed deep earthquakes.