Refine
Year of publication
Document Type
- Article (38)
Has Fulltext
- yes (38)
Is part of the Bibliography
- no (38)
Keywords
- Atherosclerosis (2)
- Cardioprotection (2)
- Cardiovascular disease (2)
- DNA methylation (2)
- Endothelial cells (2)
- Endothelial permeability (2)
- Mitochondria (2)
- NADPH oxidase (2)
- Reactive oxygen species (2)
- Superoxide (2)
Institute
Aim: NADPH oxidases are important sources of reactive oxygen species (ROS). Several Nox homologues are present together in the vascular system but whether they exhibit crosstalk at the activity level is unknown. To address this, vessel function of knockout mice for the cytosolic Nox organizer proteins p47phox, NoxO1 and a p47phox-NoxO1-double knockout were studied under normal condition and during streptozotocin-induced diabetes.
Results: In the mouse aorta, mRNA expression for NoxO1 was predominant in smooth muscle and endothelial cells, whereas p47phox was markedly expressed in adventitial cells comprising leukocytes and tissue resident macrophages. Knockout of either NoxO1 or p47phox resulted in lower basal blood pressure. Deletion of any of the two subunits also prevented diabetes-induced vascular dysfunction. mRNA expression analysis by MACE (Massive Analysis of cDNA ends) identified substantial gene expression differences between the mouse lines and in response to diabetes. Deletion of p47phox induced inflammatory activation with increased markers of myeloid cells and cytokine and chemokine induction. In contrast, deletion of NoxO1 resulted in an attenuated interferon gamma signature and reduced expression of genes related to antigen presentation. This aspect was also reflected by a reduced number of circulating lymphocytes in NoxO1-/- mice.
Innovation and conclusion: ROS production stimulated by NoxO1 and p47phox limit endothelium-dependent relaxation and maintain blood pressure in mice. However, NoxO1 and p47phox cannot substitute each other despite their similar effect on vascular function. Deletion of NoxO1 induced an anti-inflammatory phenotype, whereas p47phox deletion rather elicited a hyper-inflammatory response.
Anaphylactic shock is a severe allergic reaction involving multiple organs including the bronchial and cardiovascular system. Most anaphylactic mediators, like platelet-activating factor (PAF), histamine, and others, act through G protein – coupled receptors, which are linked to the heterotrimeric G proteins Gq /G 11 , G12/G13 , and Gi . The role of downstream signaling pathways activated by anaphylactic mediators in defi ned organs during anaphylactic reactions is largely unknown. Using genetic mouse models that allow for the conditional abrogation of G q /G 11 - and G 12 /G 13 -mediated signaling pathways by inducible Cre/loxP-mediated mutagenesis in endothelial cells (ECs), we show that Gq /G11 -mediated signaling in ECs is required for the opening of the endothelial barrier and the stimulation of nitric oxide formation by various infl ammatory mediators as well as by local anaphylaxis. The systemic effects of anaphylactic mediators like histamine and PAF, but not of bacterial lipopolysaccharide (LPS), are blunted in mice with endothelial G alpha q/G alpha 11 deficiency. Mice with endothelium-specific G alpha q /G alpha 11 deficiency, but not with G alpha 12/G alpha 13 deficiency, are protected against the fatal consequences of passive and active systemic anaphylaxis. This identifies endothelial Gq/G11 -mediated signaling as a critical mediator of fatal systemic anaphylaxis and, hence, as a potential new target to prevent or treat anaphylactic reactions.
Background: In endothelial cells, activation of the AMP-activated protein kinase (AMPK) has been linked with anti-inflammatory actions but the events downstream of kinase activation are not well understood. Here, we addressed the effects of AMPK activation/deletion on the activation of NFKappaB and determined whether the AMPK could contribute to the anti-inflammatory actions of nitric oxide (NO). Methodology/Principal Findings: Overexpression of a dominant negative AMPKalpha2 mutant in tumor necrosis factor-alpha-stimulated human endothelial cells resulted in increased NFKappaB activity, E-selectin expression and monocyte adhesion. In endothelial cells from AMPKalpha2-/- mice the interleukin (IL)-1beta induced expression of E-selectin was significantly increased. DETA-NO activated the AMPK and attenuated NFKappaB activation/E-selectin expression, effects not observed in human endothelial cells in the presence of the dominant negative AMPK, or in endothelial cells from AMPKalpha2-/- mice. Mechanistically, overexpression of constitutively active AMPK decreased the phosphorylation of IKappaB and p65, indicating a link between AMPK and the IKappaB kinase (IKK). Indeed, IKK (more specifically residues Ser177 and Ser181) was found to be a direct substrate of AMPKalpha2 in vitro. The hyper-phosphorylation of the IKK, which is known to result in its inhibition, was also apparent in endothelial cells from AMPKalpha2+/+ versus AMPKalpha2-/- mice. Conclusions: These results demonstrate that the IKK is a direct substrate of AMPKalpha2 and that its phosphorylation on Ser177 and Ser181 results in the inhibition of the kinase and decreased NFKappaB activation. Moreover, as NO potently activates AMPK in endothelial cells, a portion of the anti-inflammatory effects of NO are mediated by AMPK.
Proline-rich tyrosine kinase 2 (PYK2) can be activated by angiotensin II (Ang II) and reactive oxygen species. We report that in endothelial cells, Ang II enhances the tyrosine phosphorylation of endothelial NO synthase (eNOS) in an AT1-, H2O2-, and PYK2-dependent manner. Low concentrations (1–100 µmol/liter) of H2O2 stimulated the phosphorylation of eNOS Tyr657 without affecting that of Ser1177, and attenuated basal and agonist-induced NO production. In isolated mouse aortae, 30 µmol/liter H2O2 induced phosphorylation of eNOS on Tyr657 and impaired acetylcholine-induced relaxation. Endothelial overexpression of a dominant-negative PYK2 mutant protected against H2O2-induced endothelial dysfunction. Correspondingly, carotid arteries from eNOS–/– mice overexpressing the nonphosphorylatable eNOS Y657F mutant were also protected against H2O2. In vivo, 3 wk of treatment with Ang II considerably increased levels of Tyr657-phosphorylated eNOS in the aortae of wild-type but not Nox2y/– mice, and this was again associated with a clear impairment in endothelium-dependent vasodilatation in the wild-type but not in the Nox2y/– mice. Collectively, endothelial PYK2 activation by Ang II and H2O2 causes the phosphorylation of eNOS on Tyr657, attenuating NO production and endothelium-dependent vasodilatation. This mechanism may contribute to the endothelial dysfunction observed in cardiovascular diseases associated with increased activity of the renin–angiotensin system and elevated redox stress.
Background
Cytochrome-P450 (CYP450) epoxygenases metabolise arachidonic acid (AA) into four different biologically active epoxyeicosatrienoic acid (EET) regioisomers. Three of the EETs (i.e., 8,9-, 11,12- and 14,15-EET) are rapidly hydrolysed by the enzyme soluble epoxide hydrolase (sEH). Here, we investigated the role of sEH in nociceptive processing during peripheral inflammation.
Results
In dorsal root ganglia (DRG), we found that sEH is expressed in medium and large diameter neurofilament 200-positive neurons. Isolated DRG-neurons from sEH-/- mice showed higher EET and lower DHET levels. Upon AA stimulation, the largest changes in EET levels occurred in culture media, indicating both that cell associated EET concentrations quickly reach saturation and EET-hydrolyzing activity mostly effects extracellular EET signaling. In vivo, DRGs from sEH-deficient mice exhibited elevated 8,9-, 11,12- and 14,15-EET-levels. Interestingly, EET levels did not increase at the site of zymosan-induced inflammation. Cellular imaging experiments revealed direct calcium flux responses to 8,9-EET in a subpopulation of nociceptors. In addition, 8,9-EET sensitized AITC-induced calcium increases in DRG neurons and AITC-induced calcitonin gene related peptide (CGRP) release from sciatic nerve axons, indicating that 8,9-EET sensitizes TRPA1-expressing neurons, which are known to contribute to mechanical hyperalgesia. Supporting this, sEH-/- mice showed increased nociceptive responses to mechanical stimulation during zymosan-induced inflammation and 8,9-EET injection reduced mechanical thresholds in naive mice.
Conclusion
Our results show that the sEH can regulate mechanical hyperalgesia during inflammation by inactivating 8,9-EET, which sensitizes TRPA1-expressing nociceptors. Therefore we suggest that influencing the CYP450 pathway, which is actually highly considered to treat cardiovascular diseases, may cause pain side effects.
Cytochrome P450 (CYP) signalling pathway has been shown to play a vital role in the vasoreactivity of wild type mouse ophthalmic artery. In this study, we determined the expression, vascular responses and potential mechanisms of the CYP-derived arachidonic acid metabolites. The expression of murine CYP (Cyp2c44) and soluble epoxide hydrolase (sEH) in the wild type ophthalmic artery was determined with immunofluorescence, which showed predominant expression of Cyp2c44 in the vascular smooth muscle cells (VSMC), while sEH was found mainly in the endothelium of the wild type ophthalmic artery. Artery of Cyp2c44−/− and sEH−/− mice were used as negative controls. Targeted mass spectrometry-based lipidomics analysis of endogenous epoxide and diols of the wild type artery detected only 14, 15-EET. Vasorelaxant responses of isolated vessels in response to selective pharmacological blockers and agonist were analysed ex vivo. Direct antagonism of epoxyeicosatrienoic acids (EETs) with a selective inhibitor caused partial vasodilation, suggesting that EETs may behave as vasoconstrictors. Exogenous administration of synthetic EET regioisomers significantly constricted the vessels in a concentration-dependent manner, with the strongest responses elicited by 11, 12- and 14, 15-EETs. Our results provide the first experimental evidence that Cyp2c44-derived EETs in the VSMC mediate vasoconstriction of the ophthalmic artery.
Endothelial cells play a critical role in the adaptation of tissues to injury. Tissue ischemia induced by infarction leads to profound changes in endothelial cell functions and can induce transition to a mesenchymal state. Here we explore the kinetics and individual cellular responses of endothelial cells after myocardial infarction by using single cell RNA sequencing. This study demonstrates a time dependent switch in endothelial cell proliferation and inflammation associated with transient changes in metabolic gene signatures. Trajectory analysis reveals that the majority of endothelial cells 3 to 7 days after myocardial infarction acquire a transient state, characterized by mesenchymal gene expression, which returns to baseline 14 days after injury. Lineage tracing, using the Cdh5-CreERT2;mT/mG mice followed by single cell RNA sequencing, confirms the transient mesenchymal transition and reveals additional hypoxic and inflammatory signatures of endothelial cells during early and late states after injury. These data suggest that endothelial cells undergo a transient mes-enchymal activation concomitant with a metabolic adaptation within the first days after myocardial infarction but do not acquire a long-term mesenchymal fate. This mesenchymal activation may facilitate endothelial cell migration and clonal expansion to regenerate the vascular network.
Diabetes is associated with platelet hyper-reactivity and enhanced risk of thrombosis development. Here we compared protein expression in platelets from healthy donors and diabetic patients to identify differentially expressed proteins and their possible function in platelet activation. Mass spectrometry analyses identified cyclin Y (CCNY) in platelets and its reduced expression in platelets from diabetic patients, a phenomenon that could be attributed to the increased activity of calpains. To determine the role of CCNY in platelets, mice globally lacking the protein were studied. CCNY-/- mice demonstrated lower numbers of circulating platelets but platelet responsiveness to thrombin and a thromboxane A2 analogue were comparable with that of wild-type mice, as was agonist-induced α and dense granule secretion. CCNY-deficient platelets demonstrated enhanced adhesion to fibronectin and collagen as well as an attenuated spreading and clot retraction, indicating an alteration in “outside in” integrin signalling. This phenotype was accompanied by a significant reduction in the agonist-induced tyrosine phosphorylation of β3 integrin. Taken together we have shown that CCNY is present in anucleated platelets where it is involved in the regulation of integrin-mediated outside in signalling associated with thrombin stimulation.
You are what you eat!
(2019)
Nowadays almost everyone is aware of the link between high blood cholesterol levels and cardiovascular disease. There are effective treatments that target blood cholesterol. his overview highlights some well known and some new mediators implicated in cardiovascular disease with the common theme that all of them can be influenced by the diet.
The interaction of macrophages with apoptotic cells is required for efficient resolution of inflammation. While apoptotic cell removal prevents inflammation due to secondary necrosis, it also alters the macrophage phenotype to hinder further inflammatory reactions. The interaction between apoptotic cells and macrophages is often studied by chemical or biological induction of apoptosis, which may introduce artifacts by affecting the macrophages as well and/or triggering unrelated signaling pathways. Here, we set up a pure cell death system in which NIH 3T3 cells expressing dimerizable Caspase-8 were co-cultured with peritoneal macrophages in a transwell system. Phenotype changes in macrophages induced by apoptotic cells were evaluated by RNA sequencing, which revealed an unexpectedly dominant impact on macrophage proliferation. This was confirmed in functional assays with primary peritoneal macrophages and IC-21 macrophages. Moreover, inhibition of apoptosis during Zymosan-induced peritonitis in mice decreased mRNA levels of cell cycle mediators in peritoneal macrophages. Proliferation of macrophages in response to apoptotic cells may be important to increase macrophage numbers in order to allow efficient clearance and resolution of inflammation.