Refine
Document Type
- Article (11)
Language
- English (11)
Has Fulltext
- yes (11)
Is part of the Bibliography
- no (11)
Keywords
- Baryonic resonances (1)
- Freezeout (1)
- Heavy-ion reactions (1)
- Hyperons (1)
- Nucleus (1)
- Proton (1)
- Strangeness (1)
Institute
- Physik (11)
In this letter we report the first multi-differential measurement of correlated pion-proton pairs from 2 billion Au+Au collisions at sNN=2.42 GeV collected with HADES. In this energy regime the population of Δ(1232) resonances plays an important role in the way energy is distributed between intrinsic excitation energy and kinetic energy of the hadrons in the fireball. The triple differential d3N/dMπ±pdpTdy distributions of correlated π±p pairs have been determined by subtracting the πp combinatorial background using an iterative method. The invariant-mass distributions in the Δ(1232) mass region show strong deviations from a Breit-Wigner function with vacuum width and mass. The yield of correlated pion-proton pairs exhibits a complex isospin, rapidity and transverse-momentum dependence. In the invariant mass range 1.1<Minv(GeV/c2)<1.4, the yield is found to be similar for π+p and π−p pairs, and to follow a power law 〈Apart〉α, where 〈Apart〉 is the mean number of participating nucleons. The exponent α depends strongly on the pair transverse momentum (pT) while its pT-integrated and charge-averaged value is α=1.5±0.08st±0.2sy.
We investigate identical pion HBT intensity interferometry in central Au+Au collisions at 1.23A GeV. High-statistics π−π− and π+π+ data are measured with HADES at SIS18/GSI. The radius parameters, derived from the correlation function depending on relative momenta in the longitudinally comoving system and parametrized as three-dimensional Gaussian distribution, are studied as function of transverse momentum. A substantial charge-sign difference of the source radii is found, particularly pronounced at low transverse momentum. The extracted source parameters agree well with a smooth extrapolation of the center-of-mass energy dependence established at higher energies, extending the corresponding excitation functions down towards a very low energy.
In March 2019 the HADES experiment recorded 14 billion Ag+Ag collisions at √sNN = 2.55 GeV as a part of the FAIR phase-0 physics program. In this contribution, we present and investigate our capabilities to reconstruct and analyze weakly decaying strange hadrons and hypernuclei emerging from these collisions. The focus is put on measuring the mean lifetimes of these particles.
The production of Σ0 baryons in the nuclear reaction p (3.5 GeV) + Nb (corresponding to sNN=3.18 GeV) is studied with the detector set-up HADES at GSI, Darmstadt. Σ0s were identified via the decay Σ0→Λγ with subsequent decays Λ→pπ− in coincidence with a e+e− pair from either external (γ→e+e−) or internal (Dalitz decay γ⁎→e+e−) gamma conversions. The differential Σ0 cross section integrated over the detector acceptance, i.e. the rapidity interval 0.5<y<1.1, has been extracted as ΔσΣ0=2.3±(0.2)stat±(−0.6+0.6)sys±(0.2)norm mb, yielding the inclusive production cross section in full phase space σΣ0total=5.8±(0.5)stat±(−1.4+1.4)sys±(0.6)norm±(1.7)extrapol mb by averaging over different extrapolation methods. The Λall/Σ0 ratio within the HADES acceptance is equal to 2.3±(0.2)stat±(−0.6+0.6)sys. The obtained rapidity and momentum distributions are compared to transport model calculations. The Σ0 yield agrees with the statistical model of particle production in nuclear reactions. Keywords: Hyperons, Strangeness, Proton, Nucleus.
n this paper we report on the investigation of baryonic resonance production in proton-proton collisions at the kinetic energies of 1.25 GeV and 3.5 GeV, based on data measured with HADES. Exclusive channels npπ+ and ppπ0 as well as ppe+e− were studied simultaneously in the framework of a one-boson exchange model. The resonance cross sections were determined from the one-pion channels for Δ(1232) and N(1440) (1.25 GeV) as well as further Δ and N* resonances up to 2 GeV/c2 for the 3.5 GeV data. The data at 1.25 GeV energy were also analysed within the framework of the partial wave analysis together with the set of several other measurements at lower energies. The obtained solutions provided the evolution of resonance production with the beam energy, showing a sizeable non-resonant contribution but with still dominating contribution of Δ(1232)P33. In the case of 3.5 GeV data, the study of the ppe+e− channel gave the insight on the Dalitz decays of the baryon resonances and, in particular, on the electromagnetic transition form-factors in the time-like region. We show that the assumption of a constant electromagnetic transition form-factors leads to underestimation of the yield in the dielectron invariant mass spectrum below the vector mesons pole. On the other hand, a comparison with various transport models shows the important role of intermediate ρ production, though with a large model dependency. The exclusive channels analysis done by the HADES collaboration provides new stringent restrictions on the parameterizations used in the models.
his contribution aims to give a basic overview of the latest results regarding the production of resonances in different collision systems. The results were extracted from experimental data collected with HADES that is a multipurpose detector located at the GSI Helmholtzzentrum, Darmstadt. The main points discussed here are: the properties of the strange resonances Λ(1405) and Σ(1385), the role of Δ’s as a source of pions in the final state, the production dynamics reflected in form of differential cross sections, and the role of the ϕ meson as a source for K− particles.
Radiative transition of an excited baryon to a nucleon with emission of a virtual massive photon converting to dielectron pair (Dalitz decays) provides important information about baryon-photon coupling at low q2 in timelike region. A prominent enhancement in the respective electromagnetic transition Form Factors (etFF) at q2 near vector mesons ρ/ω poles has been predicted by various calculations reflecting strong baryon-vector meson couplings. The understanding of these couplings is also of primary importance for the interpretation of the emissivity of QCD matter studied in heavy ion collisions via dilepton emission. Dedicated measurements of baryon Dalitz decays in proton-proton and pion-proton scattering with HADES detector at GSI/FAIR are presented and discussed. The relevance of these studies for the interpretation of results obtained from heavy ion reactions is elucidated on the example of the HADES results.
We present first data on sub-threshold production of Ks0 mesons and Λ hyperons in Au+Au collisions at sNN=2.4 GeV. We observe an universal 〈Apart〉 scaling of hadrons containing strangeness, independent of their corresponding production thresholds. Comparing the yields, their 〈Apart〉 scaling, and the shapes of the rapidity and the pt spectra to state-of-the-art transport model (UrQMD, HSD, IQMD) predictions, we find that none of them can simultaneously describe these observables with reasonable χ2 values.
We present data on charged kaons (K±) and ϕ mesons in Au(1.23A GeV)+Au collisions. It is the first simultaneous measurement of K− and ϕ mesons in central heavy-ion collisions below a kinetic beam energy of 10A GeV. The ϕ/K− multiplicity ratio is found to be surprisingly high with a value of 0.52±0.16 and shows no dependence on the centrality of the collision. Consequently, the different slopes of the K+ and K− transverse-mass spectra can be explained solely by feed-down, which substantially softens the spectra of K− mesons. Hence, in contrast to the commonly adapted argumentation in literature, the different slopes do not necessarily imply diverging freeze-out temperatures of K+ and K− mesons caused by different couplings to baryons.