### Refine

#### Document Type

- Article (3)
- Conference Proceeding (1)
- Preprint (1)
- Report (1)

#### Language

- English (6)

#### Has Fulltext

- yes (6)

#### Is part of the Bibliography

- no (6)

#### Keywords

#### Institute

Spinodal crumbling
(2013)

Extending a previously developed two-phase equation of state, we simulate head-on relativistic lead-lead collisions with fluid dynamics, augmented with a finite-range term, and study the effects of the phase structure on the evolution of the baryon density. For collision energies that bring the bulk of the system into the mechanically unstable spinodal region of the phase diagram, the density irregularities are being amplified significantly. We also present results for the associated clump size distribution.

Nuclear transport models including density- and momentum-dependent mean-field effects are compared to intranuclear-cascade models and tested on recent data on inclusive p-like cross sections for 800A-MeV La+La. We find a remarkable agreement between most model calculations but a systematic disagreement with the measured yield at 20°, possibly indicating a need for modification of nuclear transport properties at high densities.

The final states of central Ca + Ca and Nb + Nb collisions at 400 and 1050 MeV/nucleon and at 400 and 650 MeV/nucleon, respectively, are studied with two independently developed statistical models, namely the classical microcanonical model and the quantum-statistical grand canonical model. It is shown that these models are in agreement with each other for these systems. Furthermore, it is demonstrated that there is essentially a one-to-one relationship between the observed relative abundances of the light fragments p, d, t, 3He, and α and the entropy per nucleon, for breakup temperatures greater than 30 MeV. Entropy values of 3.5–4 are deduced from high-multiplicity selected fragment yield data.

The coordinate and momentum space configurations of the net baryon number in heavy ion collisions that undergo spinodal decomposition, due to a first-order phase transition, are investigated using state-of-the-art machine-learning methods. Coordinate space clumping, which appears in the spinodal decomposition, leaves strong characteristic imprints on the spatial net density distribution in nearly every event which can be detected by modern machine learning techniques. On the other hand, the corresponding features in the momentum distributions cannot clearly be detected, by the same machine learning methods, in individual events. Only a small subset of events can be systematically differ- entiated if only the momentum space information is available. This is due to the strong similarity of the two event classes, with and without spinodal decomposition. In such sce- narios, conventional event-averaged observables like the baryon number cumulants signal a spinodal non-equilibrium phase transition. Indeed the third-order cumulant, the skewness, does exhibit a peak at the beam energy (Elab = 3–4 A GeV), where the transient hot and dense system created in the heavy ion collision reaches the first-order phase transition.

We calculate the antibaryon-to-baryon ratios, anti-p/p, anti-Lambda/Lambda, anti-Xi/Xi, and anti-Omega/Omega for Au+Au collisions at RHIC (sqrt{s}_{NN}=200 GeV). The effects of strong color fields associated with an enhanced strangeness and diquark production probability and with an effective decrease of formation times are investigated. Antibaryon-to-baryon ratios increase with the color field strength. The ratios also increase with the strangeness content |S|. The netbaryon number at midrapidity considerably increases with the color field strength while the netproton number remains roughly the same. This shows that the enhanced baryon transport involves a conversion into the hyperon sector (hyperonization) which can be observed in the (Lambda - anti-Lambda)/(p - anti-p) ratio.

We investigate the effects of strong color fields and of the associated enhanced intrinsic transverse momenta on the phi-meson production in ultrarelativistic heavy ion collisions at RHIC. The observed consequences include a change of the spectral slopes, varying particle ratios, and also modified mean transverse momenta. In particular, the composition of the production processes of phi-mesons, that is, direct production vs. coalescence-like production, depends strongly on the strength of the color fields and intrinsic transverse momenta and thus represents a sensitive probe for their measurement.