Refine
Document Type
- Article (5)
- Doctoral Thesis (1)
- Preprint (1)
Language
- English (7)
Has Fulltext
- yes (7)
Is part of the Bibliography
- no (7)
Keywords
Institute
- Medizin (6)
- Biowissenschaften (4)
Ataxin-2 (human gene symbol ATXN2) acts during stress responses, modulating mRNA translation and nutrient metabolism. Ataxin-2 knockout mice exhibit progressive obesity, dyslipidemia, and insulin resistance. Conversely, the progressive ATXN2 gain of function due to the fact of polyglutamine (polyQ) expansions leads to a dominantly inherited neurodegenerative process named spinocerebellar ataxia type 2 (SCA2) with early adipose tissue loss and late muscle atrophy. We tried to understand lipid dysregulation in a SCA2 patient brain and in an authentic mouse model. Thin layer chromatography of a patient cerebellum was compared to the lipid metabolome of Atxn2-CAG100-Knockin (KIN) mouse spinocerebellar tissue. The human pathology caused deficits of sulfatide, galactosylceramide, cholesterol, C22/24-sphingomyelin, and gangliosides GM1a/GD1b despite quite normal levels of C18-sphingomyelin. Cerebellum and spinal cord from the KIN mouse showed a consistent decrease of various ceramides with a significant elevation of sphingosine in the more severely affected spinal cord. Deficiency of C24/26-sphingomyelins contrasted with excess C18/20-sphingomyelin. Spinocerebellar expression profiling revealed consistent reductions of CERS protein isoforms, Sptlc2 and Smpd3, but upregulation of Cers2 mRNA, as prominent anomalies in the ceramide–sphingosine metabolism. Reduction of Asah2 mRNA correlated to deficient S1P levels. In addition, downregulations for the elongase Elovl1, Elovl4, Elovl5 mRNAs and ELOVL4 protein explain the deficit of very long-chain sphingomyelin. Reduced ASMase protein levels correlated to the accumulation of long-chain sphingomyelin. Overall, a deficit of myelin lipids was prominent in SCA2 nervous tissue at prefinal stage and not compensated by transcriptional adaptation of several metabolic enzymes. Myelination is controlled by mTORC1 signals; thus, our human and murine observations are in agreement with the known role of ATXN2 yeast, nematode, and mouse orthologs as mTORC1 inhibitors and autophagy promoters.
Cerebellar ataxias are a group of neurodegenerative disorders primarily affecting the cerebellum. Although causative mutations in several genes have been identified there is currently no cure for ataxias.
The first part of this dissertation is focused on Spinocerebellar ataxia type 2 (SCA2). SCA2 is a dominant ataxia caused by repeat expansion mutations in the ATXN2 gene, which encodes the protein Ataxin2 (ATXN2). A polyglutamine (polyQ) tract consisting of CAG repeats interrupted by CAA was identified at exon 1 of ATXN2. Healthy individuals have between 22 and 23 glutamines, while expansions longer than 33 CAG repeats cause SCA2. The most noticeable symptom that SCA2 patients show is ataxic gait; however, they also show cerebellar dysarthria, dysdiadochokinesia, and ocular dysmetria caused by the progressive cerebellar degeneration.
To model the SCA2 disease, we generated a new mouse model where 100 CAG repeats were introduced in the mouse Atxn2 gene via homologous recombination. The characterization of this mouse model, Atxn2-CAG100-KIN, demonstrated that it reproduces the symptomatology observed in SCA2 patients. These animals showed significant loss of weight over time, brain atrophy, and motor deficits.
In addition, ATXN2 intermediate expansions have been linked to the pathology of Amyotrophic lateral sclerosis (ALS) as a risk factor. ALS is a fatal neurodegenerative disease where the motor neurons in the brain and spinal cord degenerate. A hallmark of ALS is the presence of TDP43-positive inclusions in neurons and glia. Further studies of post mortem spinal cord samples from SCA2 patients showed severe and widespread neurodegeneration of the central somatosensory system. Therefore, it was of interest to further investigate the pathology affection of this tissue in the Atxn2-CAG100-KIN line and the relationship between ATXN2 and TDP43. The characterization of the spinal cord pathology via protein quantification, transcript quantification, and immunohistochemistry showed a preferential affection of RNA binding proteins (RBP) in the spinal cord rather than the cerebellum. The ALS-linked factors TDP43 and TIA1 showed time-dependent co-aggregation with ATXN2 in spinal cord sections together with an increase of CASP3 levels. Therefore, this mouse model can help develop new therapies and evaluate their effect in differently affected areas.
A transcriptome data set from Atxn2-CAG100-KIN spinal cord samples at the final disease stage of this mouse model showed a strong up-regulation of RNA toxicity-, immune- and lysosome-implicated factors. These data pointed to a pathological reactivation of the synaptic pruning and phagocytosis in microglia. ATXN2-positive aggregates were found in microglia from spinal cord sections of 14-month-old Atxn2-CAG100-KIN via immunohistochemistry. The characterization of microglial response and the potentially deleterious effects of the expanded ATXN2 in this cell type could lead to therapies to improve patients’ living standards or delay the symptoms’ onset.
The second part of this thesis was focused on an autosomal recessive form of cerebellar ataxia, Ataxia Telangiectasia (A-T), with childhood onset. A-T patients show severe cerebellar atrophy manifesting as ataxia when the child starts to walk. The genetic cause of A-T is loss-of-function-mutations in the Ataxia Telangiectasia Mutated gene (ATM). ATM is a kinase involved in DNA damage response, oxidative stress, insulin resistance, autophagy via mTOR signaling, and synaptic function.
Working with proteome data from cerebrospinal fluid of 12 A-T patients and 12 healthy controls, we aimed to define novel biomarkers that would allow following the neurodegeneration in extracellular fluid. Additional validation efforts with ~2-month-old Atm-knock-out (Atm-/-) cerebellar samples helped us to define a scenario were the deficit of vesicle-associated ATM alters the secretion of ApoB, reelin, and glutamate. As extracellular factors, apolipoproteins and their cargo such as vitamin E may be useful for neuroprotective interventions.
Mitochondrial dysfunction may activate innate immunity, e.g. upon abnormal handling of mitochondrial DNA in TFAM mutants or in altered mitophagy. Recent reports showed that also deletion of mitochondrial matrix peptidase ClpP in mice triggers transcriptional upregulation of inflammatory factors. Here, we studied ClpP-null mouse brain at two ages and mouse embryonal fibroblasts, to identify which signaling pathways are responsible, employing mass spectrometry, subcellular fractionation, immunoblots, and reverse transcriptase polymerase chain reaction. Several mitochondrial unfolded protein response factors showed accumulation and altered migration in blue-native gels, prominently the co-chaperone DNAJA3. Its mitochondrial dysregulation increased also its extra-mitochondrial abundance in the nucleus, a relevant observation given that DNAJA3 modulates innate immunity. Similar observations were made for STAT1, a putative DNAJA3 interactor. Elevated expression was observed not only for the transcription factors Stat1/2, but also for two interferon-stimulated genes (Ifi44, Gbp3). Inflammatory responses were strongest for the RLR pattern recognition receptors (Ddx58, Ifih1, Oasl2, Trim25) and several cytosolic nucleic acid sensors (Ifit1, Ifit3, Oas1b, Ifi204, Mnda). The consistent dysregulation of these factors from an early age might influence also human Perrault syndrome, where ClpP loss-of-function leads to early infertility and deafness, with subsequent widespread neurodegeneration.
Spinocerebellar ataxia type 2 (SCA2) is caused by polyglutamine expansion in Ataxin-2 (ATXN2). This factor binds RNA/proteins to modify metabolism after stress, and to control calcium (Ca2+) homeostasis after stimuli. Cerebellar ataxias and corticospinal motor neuron degeneration are determined by gain/loss in ATXN2 function, so we aimed to identify key molecules in this atrophic process, as potential disease progression markers. Our Atxn2-CAG100-Knock-In mouse faithfully models features observed in patients at pre-onset, early and terminal stages. Here, its cerebellar global RNA profiling revealed downregulation of signaling cascades to precede motor deficits. Validation work at mRNA/protein level defined alterations that were independent of constant physiological ATXN2 functions, but specific for RNA/aggregation toxicity, and progressive across the short lifespan. The earliest changes were detected at three months among Ca2+ channels/transporters (Itpr1, Ryr3, Atp2a2, Atp2a3, Trpc3), IP3 metabolism (Plcg1, Inpp5a, Itpka), and Ca2+-Calmodulin dependent kinases (Camk2a, Camk4). CaMKIV–Sam68 control over alternative splicing of Nrxn1, an adhesion component of glutamatergic synapses between granule and Purkinje neurons, was found to be affected. Systematic screening of pre/post-synapse components, with dendrite morphology assessment, suggested early impairment of CamKIIα abundance together with the weakening of parallel fiber connectivity. These data reveal molecular changes due to ATXN2 pathology, primarily impacting excitability and communication.
Hereditary Parkinson’s disease (PD) can be triggered by an autosomal dominant overdose of alpha-Synuclein (SNCA) as stressor or the autosomal recessive deficiency of PINK1 Serine/Threonine-phosphorylation activity as stress-response. We demonstrated the combination of PINK1-knockout with overexpression of SNCAA53T in double mutant (DM) mice to exacerbate locomotor deficits and to reduce lifespan. To survey posttranslational modifications of proteins underlying the pathology, brain hemispheres of old DM mice underwent quantitative label-free global proteomic mass spectrometry, focused on Ser/Thr-phosphorylations. As an exceptionally strong effect, we detected >300-fold reductions of phosphoThr1928 in MAP1B, a microtubule-associated protein, and a similar reduction of phosphoSer3781 in ANK2, an interactor of microtubules. MAP1B depletion is known to trigger perturbations of microtubular mitochondria trafficking, neurite extension, and synaptic function, so it was noteworthy that relevantly decreased phosphorylation was also detected for other microtubule and microfilament factors, namely MAP2S1801, MARK1S394, MAP1AT1794, KIF1AS1537, 4.1NS541, 4.1GS86, and ADD2S528. While the MAP1B heavy chain supports regeneration and growth cones, its light chain assists DAPK1-mediated autophagy. Interestingly, relevant phosphorylation decreases of DAPK2S299, VPS13DS2429, and VPS13CS2480 in the DM brain affected regulators of autophagy, which are implicated in PD. Overall, significant downregulations were enriched for PFAM C2 domains, other kinases, and synaptic transmission factors upon automated bioinformatics, while upregulations were not enriched for selective motifs or pathways. Validation experiments confirmed the change of LC3 processing as reflection of excessive autophagy in DM brain, and dependence of ANK2/MAP1B expression on PINK1 levels. Our new data provide independent confirmation in a mouse model with combined PARK1/PARK4/PARK6 pathology that MAP1B/ANK2 phosphorylation events are implicated in Parkinsonian neurodegeneration. These findings expand on previous observations in Drosophila melanogaster that the MAP1B ortholog futsch in the presynapse is a primary target of the PARK8 protein LRRK2, and on a report that MAP1B is a component of the pathological Lewy body aggregates in PD patient brains. Similarly, ANK2 gene locus variants are associated with the risk of PD, ANK2 interacts with PINK1/Parkin-target proteins such as MIRO1 or ATP1A2, and ANK2-derived peptides are potent inhibitors of autophagy.
Background: PINK1 deficiency causes the autosomal recessive PARK6 variant of Parkinson’s disease. PINK1 activates ubiquitin by phosphorylation and cooperates with the downstream ubiquitin ligase PARKIN, to exert quality control and control autophagic degradation of mitochondria and of misfolded proteins in all cell types.
Methods: Global transcriptome profiling of mouse brain and neuron cultures were assessed in protein-protein interaction diagrams and by pathway enrichment algorithms. Validation by quantitative reverse transcriptase polymerase chain reaction and immunoblots was performed, including human neuroblastoma cells and patient primary skin fibroblasts.
Results: In a first approach, we documented Pink1-deleted mice across the lifespan regarding brain mRNAs. The expression changes were always subtle, consistently affecting “intracellular membrane-bounded organelles”. Significant anomalies involved about 250 factors at age 6 weeks, 1300 at 6 months, and more than 3500 at age 18 months in the cerebellar tissue, including Srsf10, Ube3a, Mapk8, Creb3, and Nfkbia. Initially, mildly significant pathway enrichment for the spliceosome was apparent. Later, highly significant networks of ubiquitin-mediated proteolysis and endoplasmic reticulum protein processing occurred. Finally, an enrichment of neuroinflammation factors appeared, together with profiles of bacterial invasion and MAPK signaling changes—while mitophagy had minor significance. Immunohistochemistry showed pronounced cellular response of Iba1-positive microglia and GFAP-positive astrocytes; brain lipidomics observed increases of ceramides as neuroinflammatory signs at old age.
In a second approach, we assessed PINK1 deficiency in the presence of a stressor. Marked dysregulations of microbial defense factors Ifit3 and Rsad2 were consistently observed upon five analyses: (1) Pink1 −/− primary neurons in the first weeks after brain dissociation, (2) aged Pink1 −/− midbrain with transgenic A53T-alpha-synuclein overexpression, (3) human neuroblastoma cells with PINK1-knockdown and murine Pink1 −/− embryonal fibroblasts undergoing acute starvation, (4) triggering mitophagy in these cells with trifluoromethoxy carbonylcyanide phenylhydrazone (FCCP), and (5) subjecting them to pathogenic RNA-analogue poly(I:C). The stress regulation of MAVS, RSAD2, DDX58, IFIT3, IFIT1, and LRRK2 was PINK1 dependent. Dysregulation of some innate immunity genes was also found in skin fibroblast cells from PARK6 patients.
Conclusions: Thus, an individual biomarker with expression correlating to progression was not identified. Instead, more advanced disease stages involved additional pathways. Hence, our results identify PINK1 deficiency as an early modulator of innate immunity in neurons, which precedes late stages of neuroinflammation during alpha-synuclein spreading.
Autosomal recessive Ataxia Telangiectasia (A-T) is characterized by radiosensitivity, immunodeficiency and cerebellar neurodegeneration. A-T is caused by inactivating mutations in the Ataxia-Telangiectasia-Mutated (ATM) gene, a serine-threonine protein kinase involved in DNA-damage response and excitatory neurotransmission. The selective vulnerability of cerebellar Purkinje neurons (PN) to A-T is not well understood.