Refine
Year of publication
Document Type
- Article (11)
Has Fulltext
- yes (11)
Is part of the Bibliography
- no (11)
Keywords
- ABC transporter (1)
- FX06 (1)
- First-line regimen (1)
- HIV (1)
- Inflammation (1)
- Interleukin-6 (1)
- Keratinocytes (1)
- Ki-67 (1)
- Reactive oxygen species (1)
- Spa water (1)
Institute
- Medizin (8)
- Biowissenschaften (3)
- Physik (2)
- Biochemie, Chemie und Pharmazie (1)
High tumor interstitial fluid pressure (TIFP) is a characteristic of most solid tumors. TIFP may hamper adequate uptake of macromolecular therapeutics in tumor tissue. In addition, TIFP generates mechanical forces affecting the tumor cortex, which might influence the growth parameters of tumor cells. This seems likely as, in other tissues (namely, blood vessels or the skin), mechanical stretch is known to trigger proliferation. Therefore, we hypothesize that TIFP-induced stretch modulates proliferation-associated parameters. Solid epithelial tumors (A431 and A549) were grown in Naval Medical Research Institute nude mice, generating a TIFP of about 10 mm Hg (A431) or 5 mm Hg (A549). Tumor drainage of the central cystic area led to a rapid decline of TIFP, together with visible relaxation of the tumor cortex. It was found by sodium dodecyl sulfate polyacrylamide gel electrophoresis and Western blot analysis that TIFP lowering yields a decreased phosphorylation of proliferation-associated p44/42 mitogen-activated protein kinase and tumor relaxation. In confirmation, immunohistochemical staining showed a decrease of tumor-associated proliferation marker Ki-67 after TIFP lowering. These data suggest that the mechanical stretch induced by TIFP is a positive modulator of tumor proliferation.
Elevated tumor interstitial fluid pressure (TIFP) is a characteristic of most solid tumors. Clinically, TIFP may hamper the uptake of chemotherapeutic drugs into the tumor tissue reducing their therapeutic efficacy. In this study, a means of modulating TIFP to increase the flux of macromolecules into tumor tissue is presented, which is based on the rationale that elevated plasma colloid osmotic pressure (COP) pulls water from tumor interstitium lowering the TIFP. Concentrated human serum albumin: (20% HSA), used as an agent to enhance COP, reduced the TIFP time-dependently from 8 to 2 mm Hg in human tumor xenograft models bearing A431 epidermoid vulva carcinomas. To evaluate whether this reduction facilitates the uptake of macromolecules, the intratumoral distribution of fluorescently conjugated dextrans (2.5 mg/ml) and cetuximab (2.0 mg/ml) was probed using novel time domain nearinfrared fluorescence imaging. This method permitted discrimination and semiquantification of tumor-accumulated conjugate from background and unspecific probe fluorescence. The coadministration of 20% HSA together with either dextrans or cetuximab was found to lower the TIFP significantly and increase the concentration of the substances within the tumor tissue in comparison to control tumors. Furthermore, combined administration of 20%HSA plus cetuximab reduced the tumor growth significantly in comparison to standard cetuximab treatment. These data demonstrate that increased COP lowers the TIFP within hours and increases the uptake of therapeutic macromolecules into the tumor interstitium leading to reduced tumor growth. This model represents a novel approach to facilitate the delivery of therapeutics into tumor tissue, particularly monoclonal antibodies.
Elevated tumor interstitial fluid pressure (TIFP) is a prominent feature of solid tumors and hampers the transmigration of therapeutic macromolecules, for example, large monoclonal antibodies, from tumor-supplying vessels into the tumor interstitium. TIFP values of up to 40 mm Hg have been measured in experimental solid tumors using two conventional invasive techniques: the wick-in-needle and the micropuncture technique. We propose a novel noninvasive method of determining TIFP via ultrasonic investigation with scanning acoustic microscopy at 30-MHz frequency. In our experimental setup, we observed for the impedance fluctuations in the outer tumor hull of A431-vulva carcinoma–derived tumor xenograft mice. The gain dependence of signal strength was quantified, and the relaxation of tissue was calibrated with simultaneous hydrostatic pressure measurements. Signal patterns from the acoustical images were translated into TIFP curves, and a putative saturation effect was found for tumor pressures larger than 3 mm Hg. This is the first noninvasive approach to determine TIFP values in tumors. This technique can provide a potentially promising noninvasive assessment of TIFP and, therefore, can be used to determine the TIFP before treatment approach as well to measure therapeutic efficacy highlighted by lowered TFP values.
Background: The treatment of different skin conditions with spa waters is a long tradition dating back to at least late Hellenism. Interestingly, independent scientific examinations studying the effect of spa waters are scarce.
Objective: In the present in vitro study, we compared the effect of culture media supplemented with (a) thermal spa waters (La Roche-Posay, Avène) and (b) two natural mineral drinking waters (Heppinger, Adelholzener) on physiological parameters in HaCaT keratinocytes.
Methods: The different medium preparations were investigated with regard to cell proliferation and cell damage. Moreover, the impact on inflammation parameters with and without ultraviolet B (UVB) irradiation was examined.
Results: Two popular thermal spring waters were found to suppress cell proliferation and cell damage. Moreover, these waters reversed the induction of interleukin-6, as measured using enzyme-linked immunosorbent assay and promoter transactivation, and the formation of reactive oxygen species after UVB stimulation. Of note, the two natural mineral waters, which are distributed as drinking waters, had some effect on the above-mentioned parameters but to a lesser extent.
Conclusion: In summary, our results show that spa waters, and particularly those derived from thermal springs, reduce parameters associated with inflammation. It seems likely that trace elements such as selenium and zinc are critical for the observed effects.
Objective: Combination antiretroviral therapy (cART) has markedly increased survival and quality of life in people living with HIV. With the advent of new treatment options, including single-tablet regimens, durability and efficacy of first-line cART regimens are evolving.
Methods: We analyzed data from the prospective multicenter German Clinical Surveillance of HIV Disease (ClinSurv) cohort of the Robert-Koch Institute. Kaplan–Meier and Cox proportional hazards models were run to examine the factors associated with treatment modification. Recovery after treatment initiation was analyzed comparing pre-cART viral load and CD4+ T-cell counts with follow-up data.
Results: We included 8788 patients who initiated cART between 2005 and 2017. The sample population was predominantly male (n = 7040; 80.1%), of whom 4470 (63.5%) were reporting sex with men as the transmission risk factor. Overall, 4210 (47.9%) patients modified their first-line cART after a median time of 63 months (IQR 59–66). Regimens containing integrase strand transfer inhibitors (INSTI) were associated with significantly lower rates of treatment modification (adjusted hazard ratio 0.44; 95% CI 0.39–0.50) compared to protease inhibitor (PI)-based regimens. We found a decreased durability of first-line cART significantly associated with being female, a low CD4+ T-cell count, cART initiation in the later period (2011–2017), being on a multi-tablet regimen (MTR).
Conclusions: Drug class and MTRs are significantly associated with treatment modification. INSTI-based regimens showed to be superior compared to PI-based regimens in terms of durability.
Characteristically, most solid tumors exhibit an increased tumor interstitial fluid pressure (TIFP) that directly contributes to the lowered uptake of macromolecular therapeutics into the tumor interstitium. Abnormalities in the tumor-associated lymph vessels are a central brick in the development and prolonged sustaining of an increased TIFP. In the current study, vascular endothelial growth factor C (VEGF-C) was used to enhance tumor-associated lymphangiogenesis as a new mechanism to actively reduce the TIFP by increased lymphatic drainage of the tumor tissue. Human A431 epidermoid vulva carcinoma cells were inoculated in NMRI nu/nu mice to generate a xenograft mouse model. Seven days after tumor cell injection, VEGF-C was peritumorally injected to induce lymphangiogenesis. Tumor growth and TIFP was lowered significantly over time in VEGF-C-treated tumors in comparison to control or VEGF-A-treated animals. These data demonstrate for the first time that actively induced lymphangiogenesis can lower the TIFP in a xenograft tumor model and apparently reduce tumor growth. This model represents a novel approach to modulate biomechanical properties of the tumor interstitium enabling a lowering of TIFP in vivo.
Phase transitions in nuclear matter A method for the description of spin-isospin phase transitions in nuclear matter is developed. It allows a complete description of the pion condensation phase transition in the framework of the Landau-Migdal Fermi liquid theory. The equation of the order parameter is derived and the condensation energy is calculated. We study the influence of pion condensation on the nuclear equation of state and the temperature dependence of pion condensation. NUCLEAR STRUCTURE Description of pion-condensed ground state by Green's function technique.
Early and adequate restoration of endothelial and tubular renal function is a substantial step during regeneration after ischemia reperfusion (IR) injury, occurring, e.g., in kidney transplantation, renal surgery, and sepsis. While tubular epithelial cell injury has long been of central importance, recent perception includes the renal vascular endothelium. In this regard, the fibrin cleavage product fibrinopeptide Bβ15-42 mitigate IR injury by stabilizing interendothelial junctions through its affinity to VE-cadherin. Therefore, this study focused on the effect of Bβ15-42 on post-acute physiological renal regeneration. For this, adult male C57BL/6 mice were exposed to a 30 min bilateral renal ischemia and reperfusion for 24 h or 48 h. Animals were randomized in a non-operative control group, two operative groups each treated with i.v. administration of either saline or Bβ15-42 (2.4 mg/kg) immediately prior to reperfusion. Endothelial activation and inflammatory response was attenuated in renal tissue homogenates by single application of Bβ15-42. Meanwhile, Bβ15-42 did not affect acute kidney injury markers. Regarding the angiogenetic players VEGF-A, Angiopoietin-1, Angiopoietin-2, however, we observed significant higher expressions at mRNA and trend to higher protein level in Bβ15-42 treated mice, compared to saline treated mice after 48 h of IR, thus pointing toward an increased angiogenetic activity. Similar dynamics were observed for the intermediate filament vimentin, the cytoprotective protein klotho, stathmin and the proliferation cellular nuclear antigen, which were significantly up-regulated at the same points in time. These results suggest a beneficial effect of anatomical contiguously located endothelial cells on tubular regeneration through stabilization of endothelial integrity. Therefore, it seems that Bβ15-42 represents a novel pharmacological approach in the targeted therapy of acute renal failure in everyday clinical practice.