Refine
Document Type
- Report (2)
- Article (1)
- Part of a Book (1)
- Doctoral Thesis (1)
- Working Paper (1)
Has Fulltext
- yes (6)
Is part of the Bibliography
- no (6)
Institute
- Informatik (6)
In diesem Bericht wurde das in [Pae02] eingeführte Verfahren "GenDurchschnitt" auf die symbolischen Daten zweier Datenbanken septischer Schock-Patienten angewendet. Es wurden jeweils Generalisierungsregeln generiert, die neben einer robusten Klassifikation der Patienten in die Klassen "überlebt" und "verstorben" auch eine Interpretation der Daten ermöglichten. Ein Vergleich mit den aktuellen Verfahren A-priori und FP-Baum haben die gute Verwendbarkeit des Algorithmus belegt. Die Heuristiken führten zu Laufzeitverbesserungen. Insbesondere die Möglichkeit, die Wichtigkeit von Variablen pro Klasse zu berechnen, führte zu einer Variablenreduktion im Eingaberaum und zu der Identifikation wichtiger Items. Einige Regelbeispiele wurden für jeden Datensatz genannt. Die Frühzeitigkeit von Regeln lieferte für die beiden Datenbanken ein unterschiedliches Ergebnis: Bei den ASK-Daten treten die Regeln für die Klasse "verstorben" früher als die der Klasse "überlebt" auf; bei den MEDAN-Klinikdaten ist es umgekehrt. Eine Erklärung hierfür könnte sein, dass es sich im Vergleich zu den MEDAN-Klinikdaten bei den ASK-Daten um ein Patientenkollektiv mit einer anderen, speziellen Patientencharakteristik handelt. Anhand der Ähnlichkeit der Regeln konnten für den Anwender eine überschaubare Anzahl zuverlässiger Regeln ausgegeben werden, die möglichst unähnlich zueinander sind und somit für einen Arzt in ihrer Gesamtheit interessant sind. Assoziationsregeln und FP-Baum-Regeln erzeugen zwar kürzere Regeln, die aber zu zahlreich und nicht hinreichend sind (vgl. [Pae02, Abschnitt 4]). Zusätzlich zu der Analyse der symbolischen Daten ist auch die Analyse der metrischen MEDAN-Klinikdaten der septischen Schock-Patienten interessant. Ebenfalls ist eine Kombination der Analysen der metrischen und symbolischen Daten sinnvoll. Solche Analysen wurden ebenfalls durchgeführt; die Ergebnisse dieser Analysen werden an anderer Stelle präsentiert werden. Weitere Anwendungen der Generalisierungsregeln sind denkbar. Auch eine Verbesserung des theoretischen Fundaments (vgl. [Pae02]) erscheint sinnvoll, da erst das Zusammenspiel theoretischer und praktischer Anstrengungen zum Ziel führt.
In intensive care units physicians are aware of a high lethality rate of septic shock patients. In this contribution we present typical problems and results of a retrospective, data driven analysis based on two neural network methods applied on the data of two clinical studies. Our approach includes necessary steps of data mining, i.e. building up a data base, cleaning and preprocessing the data and finally choosing an adequate analysis for the medical patient data. We chose two architectures based on supervised neural networks. The patient data is classified into two classes (survived and deceased) by a diagnosis based either on the black-box approach of a growing RBF network and otherwise on a second network which can be used to explain its diagnosis by human-understandable diagnostic rules. The advantages and drawbacks of these classification methods for an early warning system are discussed.
In der vorliegenden Arbeit wurde ein klinisches Alarmsystem für septische Schock-Patienten aufgebaut. Zweckmäßigerweise wurden hierfür metrische körpereigene Variablen verwendet, da Analysen belegt haben, dass die metrischen Daten besser zur Alarmgenerierung geeignet sind als die symbolischen Daten. Für das Training des adaptiven Neuro-Fuzzy-Systems wurden die Daten der letzten Tage des Intensivaufenthalts verwendet, da in diesem Zeitraum, im Gegensatz zu den ersten Tagen, eine gute Klassifikationsperformanz erreicht wurde. Die daraus resultierenden Alarmhistorien liefern zuverlässige Hinweise für den Intensivmediziner auf besonders kritische Patienten. Durch diese Arbeit wird es möglich werden, den medizinischen SOFA-Score, der aus 10 Variablen zusammengesetzt ist, durch die einfachere Kombination "Systolischer Blutdruck / Diastolischer Blutdruck / Thrombozyten" zu ersetzen mit einer mindestens genauso guten Performanz. Durch die Hinzunahme weiterer Variablen ist es möglich, die Performanz des SOFA-Scores zu überbieten, wobei der SOFA-Score bereits die beste Klassifikationsperformanz unter den getesteten Scores erreichte. Die erzeugten Regeln konnten die Klassifikationsentscheidung sinnvoll untermauern. Im Gegensatz zur automatischen Regelgenerierung war es Ärzten nicht möglich ahnlich sinnvolle formale Regeln zu formulieren.
Erkennung kritischer Zustände von Patienten mit der Diagnose "Septischer Schock" mit einem RBF-Netz
(2000)
Es wurde gezeigt, dass der Arzt mit dem wachsenden RBF-Netz durch die Ausgabe von verlässlichen Warnungen unterstützt werden kann. Wie in der Clusteranalyse erläutert, leiden die Ergebnisse jedoch unter den wenigen Patienten und unter der ungenauen zeitlichen Erfassung der Daten. Da jeder Patient sehr individuelle Zustände annimmt, ist ein größeres Patientenkollektiv notwendig, um eine umfassende Wissensbasis zu lernen. Eine medizinische Nachbearbeitung der Wissensbasis durch die Analyse der Fälle ließe eine weitere Verbesserung des Ergebnisses erwarten. Somit könnten unbekannte Zusammenhänge durch das Lernen aus Beispielen und medizinisches Fachwissen kombiniert werden. Abstraktere Merkmale, die weniger abhängig von individuellen Zuständen sind, könnten eine Klassifikation noch weiter verbessern. Ein Ansatzpunkt ist z.B. die Abweichung der Messwerte vom gleitenden Mittelwert. Dieses Maß ist unempfindlicher gegenüber den individuellen Arbeitspunkten der Patienten und bildet auch die Basis von relativen Abhängigkeiten zwischen zwei Variablen, die in einem weiteren Schritt ebenfalls als Merkmal herangezogen wurden. Obwohl die Verwendung der relativen Abhängigkeiten zwischen zwei Variablen als Merkmal nicht deutlichere oder häufigere Warnungen hervorbringen konnte, weist doch die Clusteranalyse auf eine bessere Verteilung der Patienten hin. Einige Cluster sind besser für die Vorhersage geeignet, als dieses bei einer Clusterung auf Basis der Zustände erreicht werden kann. Unterstützt wird dieses Ergebnis auch durch den größeren Unterschied der Sicherheiten von falschen und richtigen Klassifikationen. Neben den bisher untersuchten Merkmalen scheinen auch die Variablen interessant zu sein, bei denen festgestellt wurde, dass sie sich trotz Medikamentengabe und adäquater Behandlung schwer stabilisieren lassen. Durch den behandelnden Arzt werden diese Werte üblicherweise in einem gewissen Bereich gehalten. Falls sich das Paar Medikament/physiologischer Parameter nicht mehr in einem sinnvollen Verhältnis befindet, kann dieses ein wichtiger Indikator sein. Nach dem Aufbau der grundlegenden Funktionalität der hier untersuchten Methoden ist die Suche nach geeigneten Merkmalen als Eingabe für ein neuronales Netz ein wesentlicher Bestandteil folgender Arbeiten. Abgesehen von dem generell anspruchsvollen Vorhaben aus Klinikdaten deutliche Hinweise für die Mortalität septischer-Schock-Patienten zu erhalten, liegen die wesentlichen Probleme in dem Umfang und der Messhäufigkeit der Frankfurter Vorstudie begründet, so dass eine Anwendung von Klassifikationsverfahren auf das umfassendere Patientenkollektiv der MEDAN Multicenter-Studie klarere Ergebnisse erwarten lässt. Eine weitere, für medizinische Anwendungen interessante, Analysemöglichkeit ist die Regelgenerierung, die zur Zeit in einem anderen Teilprojekt in der MEDAN-Arbeitsgruppe bearbeitet wird. Hier können im Fall metrischer Daten zusätzliche Hinweise für die Leistung eines reinen Klassifikationsverfahrens gewonnen werden mit dem Vorteil einer expliziten Regelausgabe. Zum anderen werden in diesem Teilprojekt auch Verfahren zur Regelgenerierung eingesetzt, die ordinale und nominale Variablen wie Diagnosen, Operationen, Therapien und Medikamentenangaben (binär, ohne genaue Dosis) auswerten können. Diese werden in den Multicenter-Daten vorhanden sein. Durch Kopplung der Regelgeneratoren für metrische Daten auf der einen Seite und für diskrete Variablen auf der anderen Seite, besteht durchaus die Hoffnung bessere Ergebnisse zu erzielen. Da der Regelgenerator für metrische Daten auf dem RBF-DDA (Abk. für: Dynamic Decay Adjustment)-Netz [BERTHOLD und DIAMOND, 1995] beruht, bietet es sich innerhalb des MEDAN-Projekts an, einen (bislang nicht durchgeführten) Vergleich mit dem hier verwendeten Netztyp durchzuführen. Der Vergleich ist allerdings nur von prinzipiellem Interesse und kann auf den hier betrachteten Daten kein grundsätzlich besseres Ergebnis liefern als die bislang durchgeführten Analysen; er kann aber zu einer umfangreichen Bewertung der Ergebnisse beitragen.
Since the description of sepsis by Schottmüller in 1914, the amount on knowledge available on sepsis and its underlying pathophysiology has substantially increased. Epidemiologic examinations of abdominal septic shock patients show the potential for high risk posed by and the extensive therapy situation in the intensive care unit (ICU) (5). Unfortunately, until now it has not been possible to significantly reduce the mortality rate of septic shock, which is as high as 50-60% worldwide, although PROWESS' results (1) are encouraging. This paper summarizes the main results of the MEDAN project and their medical impacts. Several aspects are already published, see the references. The heterogeneity of patient groups and the variations in therapy strategies is seen as one of the main problems for sepsis trials. In the MEDAN multi-center study of 71 intensive care units in Germany, a group of 382 patients made up exclusively of abdominal septic shock patients who met the consensus criteria for septic shock (3) was analysed. For use within scores or stand-alone experiments variables are often studied as isolated variables, not as a multidimensional whole, e.g. a recent study takes a look at the role thrombocytes play (15). To avoid this limitation, our study compares several established scores (SOFA, APACHE II, SAPS II, MODS) by a multi-dimensional neuronal network analysis. For outcome prediction the data of 382 patients was analysed by using most of the commonly documented vital parameters and doses of medicine (metric variables). Data was collected in German hospitals from 1998 to 2001. The 382 handwritten patient records were transferred to an electronic database giving the amount of 2.5 million data entries. The metric data contained in the database is composed of daily measurements and doses of medicine. We used range and plausibility checks to allow no faulty data in the electronic database. 187 of the 382 patients are deceased (49 %).