Refine
Document Type
- Article (5)
- Report (3)
- Preprint (2)
- Book (1)
- Conference Proceeding (1)
- Contribution to a Periodical (1)
Has Fulltext
- yes (13)
Is part of the Bibliography
- no (13)
Keywords
- Biographie (2)
- Frankfurt <Main> / Universität (2)
- Mathematiker (2)
- Dehn (1)
- Dessins d'enfants (1)
- Emmy (1)
- Frankfurt (1)
- Frankfurt / Universität (1)
- Franz (1)
- Fuchsian groups (1)
Institute
- Mathematik (12)
- Präsidium (1)
Ein Mathematiker mit universalem Anspruch : über Max Dehn und sein Wirken am Mathematischen Seminar
(2002)
Für eine erste Blüte der Mathematik in Frankfurt gab Max Dehn (1878 –1952) in den Jahren ab 1921 bis 1935 entscheidende Impulse. Seine völlig neuen Ideen zur Knotentheorie und zur Topologie beeinflussten die Entwicklung der Mathematik weit über Deutschland hinaus. 1935 fand sein Wirken in Frankfurt durch den Terror der Nationalsozialisten ein jähes Ende. Nach einer gefahrvollen Flucht über Norwegen, Finnland, die Sowjetunion und Japan erreichte Dehn schließlich, 62-jährig, die Vereinigten Staaten von Nordamerika. Eine seinen Fähigkeiten entsprechende Stellung konnte er dort nicht mehr erlangen. Sein fünfzigster Todestag in diesem Jahr ist Anlass für diese Rückschau.
[Nachruf] Wolfgang Schwarz
(2013)
Let G be a Fuchsian group containing two torsion free subgroups defining isomorphic Riemann surfaces. Then these surface subgroups K and alpha-Kalpha exp(-1) are conjugate in PSl(2,R), but in general the conjugating element alpha cannot be taken in G or a finite index Fuchsian extension of G. We will show that in the case of a normal inclusion in a triangle group G these alpha can be chosen in some triangle group extending G. It turns out that the method leading to this result allows also to answer the question how many different regular dessins of the same type can exist on a given quasiplatonic Riemann surface.
Bipartite graphs occur in many parts of mathematics, and their embeddings into orientable compact surfaces are an old subject. A new interest comes from the fact that these embeddings give dessins d’enfants providing the surface with a unique structure as a Riemann surface and algebraic curve. In this paper, we study the (surprisingly many different) dessins coming from the graphs of finite cyclic projective planes. It turns out that all reasonable questions about these dessins — uniformity, regularity, automorphism groups, cartographic groups, defining equations of the algebraic curves, their fields of definition, Galois actions — depend on cyclic orderings of difference sets for the projective planes. We explain the interplay between number theoretic problems concerning these cyclic ordered difference sets and topological properties of the dessin like e.g. the Wada property that every vertex lies on the border of every cell.
We consider Schwarz maps for triangles whose angles are rather general rational multiples of pi. Under which conditions can they have algebraic values at algebraic arguments? The answer is based mainly on considerations of complex multiplication of certain Prym varieties in Jacobians of hypergeometric curves. The paper can serve as an introduction to transcendence techniques for hypergeometric functions, but contains also new results and examples.
The main subject of this survey are Belyi functions and dessins d'enfants on Riemann surfaces. Dessins are certain bipartite graphs on 2-mainfolds defining there are conformal and even an algebraic structure. In principle, all deeper properties of the resulting Riemann surfaces or algebraic curves should be encoded in these dessins, but the decoding turns out to be difficult and leads to many open problems. We emphasize arithmetical aspects like Galois actions, the relation to the ABC theorem in function filds and arithemtic questions in uniformization theory of algebraic curves defined over number fields.