Refine
Language
- English (49)
Has Fulltext
- yes (49)
Is part of the Bibliography
- no (49)
Keywords
- Heavy-ion collisions (4)
- Beam Energy Scan (2)
- Chiral Magnetic Effect (2)
- B-slope (1)
- Beam energy scan (1)
- Charm quark spatial diffusion coefficient (1)
- Chiral magnetic effect (1)
- Coalescence (1)
- Collectivity (1)
- Correlation (1)
Institute
We measure triangular flow relative to the reaction plane at 3 GeV center-of-mass energy in Au+Au collisions at the BNL Relativistic Heavy Ion Collider. A significant v3 signal for protons is observed, which increases for higher rapidity, higher transverse momentum, and more peripheral collisions. The triangular flow is essentially rapidity-odd with a slope at mid-rapidity, dv3/dy|(y=0), opposite in sign compared to the slope for directed flow. No significant v3 signal is observed for charged pions and kaons. Comparisons with models suggest that a mean field potential is required to describe these results, and that the triangular shape of the participant nucleons is the result of stopping and nuclear geometry.
We report results on an elastic cross section measurement in proton-proton collisions at a center-of-mass energy s√=510 GeV, obtained with the Roman Pot setup of the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The elastic differential cross section is measured in the four-momentum transfer squared range 0.23≤−t≤0.67 GeV2. We find that a constant slope B does not fit the data in the aforementioned t range, and we obtain a much better fit using a second-order polynomial for B(t). The t dependence of B is determined using six subintervals of t in the STAR measured t range, and is in good agreement with the phenomenological models. The measured elastic differential cross section dσ/dt agrees well with the results obtained at s√=546 GeV for proton--antiproton collisions by the UA4 experiment. We also determine that the integrated elastic cross section within the STAR t-range is σfidel=462.1±0.9(stat.)±1.1(syst.)±11.6(scale) μb.
We report results on an elastic cross section measurement in proton-proton collisions at a center-of-mass energy s√=510 GeV, obtained with the Roman Pot setup of the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The elastic differential cross section is measured in the four-momentum transfer squared range 0.23≤−t≤0.67 GeV2. We find that a constant slope B does not fit the data in the aforementioned t range, and we obtain a much better fit using a second-order polynomial for B(t). The t dependence of B is determined using six subintervals of t in the STAR measured t range, and is in good agreement with the phenomenological models. The measured elastic differential cross section dσ/dt agrees well with the results obtained at s√=546~GeV for proton--antiproton collisions by the UA4 experiment. We also determine that the integrated elastic cross section within the STAR t-range is σfidel=462.1±0.9(stat.)±1.1(syst.)±11.6(scale) μb.
Jet-hadron correlations with respect to the event plane in √sNN = 200 GeV Au+Au collisions in STAR
(2024)
Angular distributions of charged particles relative to jet axes are studied in sNN−−−√ = 200 GeV Au+Au collisions as a function of the jet orientation with respect to the event plane. This differential study tests the expected path-length dependence of energy loss experienced by a hard-scattered parton as it traverses the hot and dense medium formed in heavy-ion collisions. A second-order event plane is used in the analysis as an experimental estimate of the reaction plane formed by the collision impact parameter and the beam direction. Charged-particle jets with 15<pT,jet< 20 and 20<pT,jet< 40 GeV/c were reconstructed with the anti-kT algorithm with radius parameter setting of (R=0.4) in the 20-50\% centrality bin to maximize the initial-state eccentricity of the interaction region. The reaction plane fit method is implemented to remove the flow-modulated background with better precision than prior methods. Yields and widths of jet-associated charged-hadron distributions are extracted in three angular bins between the jet axis and the event plane. The event-plane (EP) dependence is further quantified by ratios of the associated yields in different EP bins. No dependence on orientation of the jet axis with respect to the event plane is seen within the uncertainties in the kinematic regime studied. This finding is consistent with a similar experimental observation by ALICE in sNN−−−√ = 2.76 TeV Pb+Pb collision data.
The longitudinal and transverse spin transfers to Λ (Λ¯¯¯¯) hyperons in polarized proton-proton collisions are expected to be sensitive to the helicity and transversity distributions, respectively, of (anti-)strange quarks in the proton, and to the corresponding polarized fragmentation functions. We report improved measurements of the longitudinal spin transfer coefficient, DLL, and the transverse spin transfer coefficient, DTT, to Λ and Λ¯¯¯¯ in polarized proton-proton collisions at s√ = 200 GeV by the STAR experiment at RHIC. The data set includes longitudinally polarized proton-proton collisions with an integrated luminosity of 52 pb−1, and transversely polarized proton-proton collisions with a similar integrated luminosity. Both data sets have about twice the statistics of previous results and cover a kinematic range of |ηΛ(Λ¯¯¯¯)| < 1.2 and transverse momentum pT,Λ(Λ¯¯¯¯) up to 8 GeV/c. We also report the first measurements of the hyperon spin transfer coefficients DLL and DTT as a function of the fractional jet momentum z carried by the hyperon, which can provide more direct constraints on the
Partons traversing the strongly interacting medium produced in heavy-ion collisions are expected to lose energy depending on their color charge and mass. We measure the nuclear modification factors for charm- and bottom-decay electrons, defined as the ratio of yields, scaled by the number of binary nucleon-nucleon collisions, in sNN−−−√ = 200 GeV Au+Au collisions to p+p collisions (RAA), or in central to peripheral Au+Au collisions (RCP). We find the bottom-decay electron RAA and RCP to be significantly higher than that of charm-decay electrons. Model calculations including mass-dependent parton energy loss in a strongly coupled medium are consistent with the measured data. These observations provide clear evidence of mass ordering of charm and bottom quark energy loss when traversing through the strongly coupled medium created in heavy-ion collisions.
Jet-hadron correlations with respect to the event plane in √sNN = 200 GeV Au+Au collisions in STAR
(2024)
Angular distributions of charged particles relative to jet axes are studied in sNN−−−√ = 200 GeV Au+Au collisions as a function of the jet orientation with respect to the event plane. This differential study tests the expected path-length dependence of energy loss experienced by a hard-scattered parton as it traverses the hot and dense medium formed in heavy-ion collisions. A second-order event plane is used in the analysis as an experimental estimate of the reaction plane formed by the collision impact parameter and the beam direction. Charged-particle jets with 15<pT,jet< 20 and 20<pT,jet< 40 GeV/c were reconstructed with the anti-kT algorithm with radius parameter setting of (R=0.4) in the 20-50\% centrality bin to maximize the initial-state eccentricity of the interaction region. The reaction plane fit method is implemented to remove the flow-modulated background with better precision than prior methods. Yields and widths of jet-associated charged-hadron distributions are extracted in three angular bins between the jet axis and the event plane. The event-plane (EP) dependence is further quantified by ratios of the associated yields in different EP bins. No dependence on orientation of the jet axis with respect to the event plane is seen within the uncertainties in the kinematic regime studied. This finding is consistent with a similar experimental observation by ALICE in sNN−−−√ = 2.76 TeV Pb+Pb collision data.
Density fluctuations near the QCD critical point can be probed via an intermittency analysis in relativistic heavy-ion collisions. We report the first measurement of intermittency in Au+Au collisions at sNN−−−√ = 7.7-200 GeV measured by the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The scaled factorial moments of identified charged hadrons are analyzed at mid-rapidity and within the transverse momentum phase space. We observe a power-law behavior of scaled factorial moments in Au+Au collisions and a decrease in the extracted scaling exponent (ν) from peripheral to central collisions. The ν is consistent with a constant for different collisions energies in the mid-central (10-40\%) collisions. Moreover, the ν in the 0-5\% most central Au+Au collisions exhibits a non-monotonic energy dependence that reaches a possible minimum around sNN−−−√ = 27 GeV. The physics implications on the QCD phase structure are discussed.