Refine
Year of publication
Document Type
- Preprint (449)
- Article (371)
- Part of a Book (2)
- Working Paper (1)
Language
- English (823)
Has Fulltext
- yes (823)
Is part of the Bibliography
- no (823)
Keywords
- BESIII (19)
- e +-e − Experiments (16)
- Branching fraction (12)
- Hadron-Hadron Scattering (9)
- Particle and Resonance Production (9)
- Quarkonium (8)
- Charm Physics (6)
- Heavy Ion Experiments (6)
- Spectroscopy (6)
- Hadronic decays (5)
Institute
- Physik (700)
- Frankfurt Institute for Advanced Studies (FIAS) (391)
- Informatik (279)
- Medizin (5)
- Geowissenschaften (4)
- Biochemie und Chemie (2)
- Center for Financial Studies (CFS) (1)
- Georg-Speyer-Haus (1)
- House of Finance (HoF) (1)
- Informatik und Mathematik (1)
There has recently been a dramatic renewal of interest in hadron spectroscopy and charm physics. This renaissance has been driven in part by the discovery of a plethora of charmonium-like XYZ states at BESIII and B factories, and the observation of an intriguing proton-antiproton threshold enhancement and the possibly related X(1835) meson state at BESIII, as well as the threshold measurements of charm mesons and charm baryons.
We present a detailed survey of the important topics in tau-charm physics and hadron physics that can be further explored at BESIII during the remaining operation period of BEPCII. This survey will help in the optimization of the data-taking plan over the coming years, and provides physics motivation for the possible upgrade of BEPCII to higher luminosity.
By analyzing (27.12±0.14)×108 ψ(3686) events accumulated with the BESIII detector, the decay ηc(2S)→K+K−η is observed for the first time with a significance of 6.2σ after considering systematic uncertainties. The product of the branching fractions of ψ(3686)→γηc(2S) and ηc(2S)→K+K−η is measured to be B(ψ(3686)→γηc(2S))×B(ηc(2S)→K+K−η)=(2.39±0.32±0.34)×10−6, where the first uncertainty is statistical, and the second one is systematic. The branching fraction of ηc(2S)→K+K−η is determined to be B(ηc(2S)→K+K−η)=(3.42±0.46±0.48±2.44)×10−3, where the third uncertainty is due to the branching fraction of ψ(3686)→γηc(2S). Using a recent BESIII measurement of B(ηc(2S)→K+K−π0), we also determine the ratio between the branching fractions of ηc(2S)→K+K−η and ηc(2S)→K+K−π0 to be 1.49±0.22±0.25, which is consistent with the previous result of BaBar at a comparable precision level.
The cross sections of the 𝑒+𝑒−→𝜙𝜂′ process at center-of-mass energies from 3.508 to 4.951 GeV are measured with high precision using 26.1 fb−1 data collected with the BESIII detector operating at the BEPCII storage ring. The cross sections are of the order of a few picobarn and decrease as the center-of-mass energy increases as 𝑠−𝑛/2 with 𝑛=4.35±0.14. This result is in agreement with the Nambu-Jona-Lasinio model prediction of 𝑛=3.5±0.9. In addition, the charmless decay 𝜓(3770)→𝜙𝜂′ is searched for by fitting the measured cross sections, yet no significant signal is observed. The upper limit of ℬ(𝜓(3770)→𝜙𝜂′) at the 90% confidence level is determined to be 2.3×10−5.
Using a sample of (10087±44)×106 J/ψ events, which is about 45 times larger than that was previously analyzed, a further investigation on the J/ψ→γ3(π+π−) decay is performed. A significant distortion at 1.84 GeV/c2 in the line-shape of the 3(π+π−) invariant mass spectrum is observed for the first time, which could be resolved by two overlapping resonant structures, X(1840) and X(1880). The new state X(1880) is observed with a statistical significance larger than 10σ. The mass and width of X(1880) are determined to be 1882.1±1.7±0.7 MeV/c2 and 30.7±5.5±2.4 MeV, respectively, which indicates the existence of a pp¯ bound state.
Using a sample of (10087±44)×106 𝐽/𝜓 events, which is about 45 times larger than that was previously analyzed, a further investigation on the 𝐽/𝜓→𝛾3(𝜋+𝜋−) decay is performed. A significant distortion at 1.84 GeV/𝑐2 in the line shape of the 3(𝜋+𝜋−) invariant mass spectrum is observed for the first time, which could be resolved by two overlapping resonant structures, 𝑋(1840) and 𝑋(1880). The new state 𝑋(1880) is observed with a statistical significance larger than 10𝜎. The mass and width of 𝑋(1880) are determined to be 1882.1±1.7±0.7 MeV/𝑐2 and 30.7±5.5±2.4 MeV, respectively, which indicates the existence of a 𝑝¯ 𝑝 bound state.
Using a sample of (10087±44)×106 J/ψ events, which is about fifty times larger than that was previously analyzed, a further investigation on the J/ψ→γ3(π+π−) decay is performed. A significant distortion at 1.84 GeV/c2 in the line-shape of the 3(π+π−) invariant mass spectrum is observed for the first time, which is analogous to the behavior of X(1835) and could be resolved by two overlapping resonant structures, X(1840) and X(1880). The new state X(1880) is observed with a statistical significance of 14.7σ. The mass and width of X(1880) are determined to be 1882.1±1.7±0.7 MeV/c2 and 30.7±5.5±2.4 MeV, respectively, which indicates the existence of a pp¯ bound state.
Evidence for the singly Cabibbo suppressed decay Λ+c→pπ0 is reported for the first time with a statistical significance of 3.7σ based on 6.0 fb−1 of e+e− collision data collected at center-of-mass energies between 4.600 and 4.843 GeV with the BESIII detector at the BEPCII collider. The absolute branching fraction of Λ+c→pπ0 is measured to be (1.56+0.72−0.58±0.20)×10−4. Combining with the branching fraction of Λ+c→nπ+, (6.6±1.2±0.4)×10−4, the ratio of the branching fractions Λ+c→nπ+ and Λ+c→pπ0 is calculated to be 4.2+2.2−1.9; this is an important input for the understanding of the decay mechanisms of charmed baryons. In addition, the absolute branching fraction of Λ+c→pη is measured to be (1.63±0.31stat±0.11syst)×10−3, which is consistent with previous measurements.
Evidence for the singly Cabibbo suppressed decay Λ+c→pπ0 is reported for the first time with a statistical significance of 3.7σ based on 6.0 fb−1 of e+e− collision data collected at center-of-mass energies between 4.600 and 4.843 GeV with the BESIII detector at the BEPCII collider. The absolute branching fraction of Λ+c→pπ0 is measured to be (1.56+0.72−0.58±0.20)×10−4, which distinctly exceeds the upper limit measured by Belle experiment. Combining with the branching fraction of Λ+c→nπ+, (6.6±1.3)×10−4, the ratio of the branching fractions of Λ+c→nπ+ and Λ+c→pπ0 is calculated to be 3.2+2.2−1.2. As an important input for the theoretical models describing the decay mechanisms of charmed baryons, our result indicates that the non-factorizable contributions play an essential role and their interference with the factorizable contributions should not be significant. In addition, the absolute branching fraction of Λ+c→pη is measured to be (1.63±0.31stat±0.11syst)×10−3, which is consistent with previous measurements.
Evidence for the singly Cabibbo suppressed decay Λ+c→pπ0 is reported for the first time with a statistical significance of 3.7σ based on 6.0 fb−1 of e+e− collision data collected at center-of-mass energies between 4.600 and 4.843 GeV with the BESIII detector at the BEPCII collider. The absolute branching fraction of Λ+c→pπ0 is measured to be (1.56+0.72−0.58±0.20)×10−4, which distinctly exceeds the upper limit measured by Belle experiment. Combining with the branching fraction of Λ+c→nπ+, (6.6±1.3)×10−4, the ratio of the branching fractions of Λ+c→nπ+ and Λ+c→pπ0 is calculated to be 3.2+2.2−1.2. As an important input for the theoretical models describing the decay mechanisms of charmed baryons, our result indicates that the non-factorizable contributions play an essential role and their interference with the factorizable contributions should not be significant. In addition, the absolute branching fraction of Λ+c→pη is measured to be (1.63±0.31stat±0.11syst)×10−3, which is consistent with previous measurements.
Evidence for the singly Cabibbo suppressed decay Λ+c→pπ0 is reported for the first time with a statistical significance of 3.7σ based on 6.0 fb−1 of e+e− collision data collected at center-of-mass energies between 4.600 and 4.843 GeV with the BESIII detector at the BEPCII collider. The absolute branching fraction of Λ+c→pπ0 is measured to be (1.56+0.72−0.58±0.20)×10−4, which distinctly exceeds the upper limit measured by Belle experiment. Combining with the branching fraction of Λ+c→nπ+, (6.6±1.3)×10−4, the ratio of the branching fractions of Λ+c→nπ+ and Λ+c→pπ0 is calculated to be 3.2+2.2−1.2. As an important input for the theoretical models describing the decay mechanisms of charmed baryons, our result indicates that the non-factorizable contributions play an essential role and their interference with the factorizable contributions should not be significant. In addition, the absolute branching fraction of Λ+c→pη is measured to be (1.63±0.31stat±0.11syst)×10−3, which is consistent with previous measurements.