Refine
Year of publication
Document Type
- Preprint (880)
- Article (683)
- Working Paper (1)
Language
- English (1564)
Has Fulltext
- yes (1564)
Is part of the Bibliography
- no (1564)
Keywords
- BESIII (20)
- e +-e − Experiments (20)
- Branching fraction (15)
- Heavy Ion Experiments (15)
- Hadron-Hadron Scattering (14)
- Particle and Resonance Production (10)
- QCD (9)
- Quarkonium (9)
- Charm Physics (7)
- Hadron-Hadron scattering (experiments) (7)
Institute
The decays of χc2→K+K−π0, KSK±π∓ and π+π−π0 are studied with the ψ(3686) data samples collected with the Beijing Spectrometer (BESIII). For the first time, the branching fractions of χc2→K∗K¯¯¯¯¯, χc2→a±2(1320)π∓/a02(1320)π0 and χc2→ρ(770)±π∓ are measured. Here K∗K¯¯¯¯¯ denotes both K∗±K∓ and K∗0K¯¯¯¯¯0+c.c., and K∗ denotes the resonances K∗(892), K∗2(1430) and K∗3(1780). The observations indicate a strong violation of the helicity selection rule in χc2 decays into vector and pseudoscalar meson pairs. The measured branching fractions of χc2→K∗(892)K¯¯¯¯¯ are more than 20 times larger than that of χc2→ρ(770)±π∓, which implies the effects are largely due to U-spin symmetry breaking, rather than just isospin symmetry breaking in charmonium decays.
The decays of χc2→K+K−π0, KSK±π∓ and π+π−π0 are studied with the ψ(3686) data samples collected with the Beijing Spectrometer (BESIII). For the first time, the branching fractions of χc2→K∗K¯¯¯¯¯, χc2→a±2(1320)π∓/a02(1320)π0 and χc2→ρ(770)±π∓ are measured. Here K∗K¯¯¯¯¯ denotes both K∗±K∓ and K∗0K¯¯¯¯¯0+c.c., and K∗ denotes the resonances K∗(892), K∗2(1430) and K∗3(1780). The observations indicate a strong violation of the helicity selection rule in χc2 decays into vector and pseudoscalar meson pairs. The measured branching fractions of χc2→K∗(892)K¯¯¯¯¯ are more than 20 times larger than that of χc2→ρ(770)±π∓, which implies the effects are largely due to U-spin symmetry breaking, rather than just isospin symmetry breaking in charmonium decays.
The decays of χc2→K+K−π0, KSK±π∓ and π+π−π0 are studied with the ψ(3686) data samples collected with the Beijing Spectrometer (BESIII). For the first time, the branching fractions of χc2→K∗K¯¯¯¯¯, χc2→a±2(1320)π∓/a02(1320)π0 and χc2→ρ(770)±π∓ are measured. Here K∗K¯¯¯¯¯ denotes both K∗±K∓ and K∗0K¯¯¯¯¯0+c.c., and K∗ denotes the resonances K∗(892), K∗2(1430) and K∗3(1780). The observations indicate a strong violation of the helicity selection rule in χc2 decays into vector and pseudoscalar meson pairs. The measured branching fractions of χc2→K∗(892)K¯¯¯¯¯ are more than 10 times larger than the upper limit of χc2→ρ(770)±π∓, which is so far the first direct observation of a significant U-spin symmetry breaking effect in charmonium decays.
Using a data sample of (448.1±2.9)×106 ψ(3686) decays collected by the BESIII detector at the Beijing Electron Positron Collider (BEPCII), we observe the decays χcJ→ϕϕη (J=0, 1, 2), where the χcJ are produced via the radiative processes ψ(3686)→γχcJ. The branching fractions are measured to be B(χc0→ϕϕη)=(8.41±0.74±0.62)×10−4, B(χc1→ϕϕη)=(2.96±0.43±0.22)×10−4, and B(χc2→ϕϕη)=(5.33±0.52±0.39)×10−4, where the first uncertainties are statistical and the second are systematic. We also search for intermediate states in the ϕϕ or ηϕ combinations, but no significant structure is seen due to the limited statistics.
Using 2.93 fb−1 of 𝑒+𝑒− collision data taken at a center-of-mass energy of 3.773 GeV by the BESIII detector at the BEPCII, we measure the branching fractions of the singly Cabibbo-suppressed decays 𝐷→𝜔𝜋𝜋 to be ℬ(𝐷0→𝜔𝜋+𝜋−)=(1.33±0.16±0.12)×10−3 and ℬ(𝐷+→𝜔𝜋+𝜋0)=(3.87±0.83±0.25)×10−3, where the first uncertainties are statistical and the second ones systematic. The statistical significances are 12.9𝜎 and 7.7𝜎, respectively. The precision of ℬ(𝐷0→𝜔𝜋+𝜋−) is improved by a factor of 2.1 over prior measurements, and ℬ(𝐷+→𝜔𝜋+𝜋0) is measured for the first time. No significant signal for 𝐷0→𝜔𝜋0𝜋0 is observed, and the upper limit on the branching fraction is ℬ(𝐷0→𝜔𝜋0𝜋0)<1.10×10−3 at the 90% confidence level. The branching fractions of 𝐷→𝜂𝜋𝜋 are also measured and consistent with existing results.
By analyzing the large-angle Bhabha scattering events e+e− → (γ)e+e− and diphoton events e+e− → (γ)γγ for the data sets collected at center-of-mass (c.m.) energies between 2.2324 and 4.5900 GeV (131 energy points in total) with the upgraded Beijing Spectrometer (BESIII) at the Beijing Electron-Positron Collider (BEPCII), the integrated luminosities have been measured at the different c.m. energies, individually. The results are important inputs for the R value and J/ψ resonance parameter measurements.
To study the nature of the state Y (2175), a dedicated data set of e+e− collision data was collected at the center-of-mass energy of 2.125 GeV with the BESIII detector at the BEPCII collider. By analyzing large-angle Bhabha scattering events, the integrated luminosity of this data set is determined to be 108.49±0.02±0.85 pb−1, where the first uncertainty is statistical and the second one is systematic. In addition, the center-of-mass energy of the data set is determined with radiative dimuon events to be 2126.55±0.03±0.85 MeV, where the first uncertainty is statistical and the second one is systematic.
Using a low background data sample of 9.7×105 𝐽/𝜓→𝛾𝜂′, 𝜂′→𝛾𝜋+𝜋− events, which are 2 orders of magnitude larger than those from the previous experiments, recorded with the BESIII detector at BEPCII, the decay dynamics of 𝜂′→𝛾𝜋+𝜋− are studied with both model-dependent and model-independent approaches. The contributions of 𝜔 and the 𝜌(770)−𝜔 interference are observed for the first time in the decays 𝜂′→𝛾𝜋+𝜋− in both approaches. Additionally, a contribution from the box anomaly or the 𝜌(1450) resonance is required in the model-dependent approach, while the process specific part of the decay amplitude is determined in the model-independent approach.
The process 𝑒+𝑒−→𝜙𝜂′ has been studied for the first time in detail using data sample collected with the BESIII detector at the BEPCII collider at center of mass energies from 2.05 to 3.08 GeV. A resonance with quantum numbers 𝐽𝑃𝐶=1−− is observed with mass 𝑀=(2177.5±4.8(stat)±19.5(syst))MeV/𝑐2 and width Γ=(149.0±15.6(stat)±8.9(syst)) MeV with a statistical significance larger than 10𝜎, including systematic uncertainties. If the observed structure is identified with the 𝜙(2170), then the ratio of partial width between the 𝜙𝜂′ by BESIII and 𝜙𝜂 by BABAR is (ℬ𝑅𝜙𝜂Γ𝑅𝑒𝑒)/(ℬ𝑅𝜙𝜂′Γ𝑅𝑒𝑒)=0.23±0.10(stat)±0.18(syst), which is smaller than the prediction of the 𝑠¯𝑠𝑔 hybrid models by several orders of magnitude.
Using an e+e− annihilation data sample corresponding to an integrated luminosity of 2.93fb−1 collected at the center-of-mass energy of 3.773\,GeV with the BESIII detector, we measure the absolute branching fractions of D+→ηηπ+, D+→ηπ+π0, and D0→ηπ+π− to be (2.96±0.24±0.13)×10−3, (2.23±0.15±0.11)×10−3, and (1.20±0.07±0.04)×10−3, respectively, where the first uncertainties are statistical and the second ones systematic. The D+→ηηπ+ decay is observed for the first time and the branching fractions of D+(0)→ηπ+π0(−) are measured with much improved precision. In addition we test for CP asymmetries in the separated charge-conjugate branching fractions; no evidence of CP violation is found.