Refine
Year of publication
Language
- English (61)
Has Fulltext
- yes (61)
Is part of the Bibliography
- no (61)
Keywords
- BESIII (14)
- Branching fractions (4)
- Elastic scattering (3)
- Hadronic decays (3)
- Initial state radiation (3)
- Absolute branching fraction (2)
- Branching fraction (2)
- Charmonium (2)
- Collectivity (2)
- Correlation (2)
Institute
A massless particle beyond the Standard Model is searched for in the two-body decay Σ+→p+invisible using (1.0087±0.0044)×1010 J/ψ events collected at a center-of-mass energy of s√=3.097 GeV with the BESIII detector at the BEPCII collider. No significant signal is observed, and the upper limit on the branching fraction B(Σ+→p+invisible) is determined to be 3.2×10−5 at the 90% confidence level. This is the first search for a flavor-changing neutral current process with missing energy in hyperon decays which plays an important role in constraining new physics models.
Using 448.1 × 106 ψ(3686) decays collected with the BESIII detector at the BEPCII e+e− storage rings, the branching fractions and angular distributions of the decays χcJ → Ξ−Ξ¯¯¯¯+ and Ξ0Ξ¯¯¯¯0 (J = 0, 1, 2) are measured based on a partial-reconstruction technique. The decays χc1 → Ξ0Ξ¯¯¯¯0 and χc2 → Ξ0Ξ¯¯¯¯0 are observed for the first time with statistical significances of 7σ and 15σ, respectively. The results of this analysis are in good agreement with previous measurements and have significantly improved precision.
A massless particle beyond the Standard Model is searched for in the two-body decay Σ+→p+invisible using (1.0087±0.0044)×1010 J/ψ events collected at a center-of-mass energy of s√=3.097 GeV with the BESIII detector at the BEPCII collider. No significant signal is observed, and the upper limit on the branching fraction B(Σ+→p+invisible) is determined to be 3.2×10−5 at the 90% confidence level. This is the first search for a flavor-changing neutral current process with missing energy in hyperon decays which plays an important role in constraining new physics models.
We search for an axion-like particle (ALP) a through the process ψ(3686)→π+π−J/ψ, J/ψ→γa, a→γγ in a data sample of (2.71±0.01)×109 ψ(3686) events collected by the BESIII detector. No significant ALP signal is observed over the expected background, and the upper limits on the branching fraction of the decay J/ψ→γa and the ALP-photon coupling constant gaγγ are set at 95% confidence level in the mass range of 0.165≤ma≤2.84GeV/c2. The limits on B(J/ψ→γa) range from 8.3×10−8 to 1.8×10−6 over the search region, and the constraints on the ALP-photon coupling are the most stringent to date for 0.165≤ma≤1.468GeV/c2.
We search for the semi-leptonic decays Λ + c → Λπ+π−e+νe and Λ + c → pK0 Sπ−e+νe in a sample of 4.5 fb−1 of e+e− annihilation data collected in the center-of-mass energy region between 4.600 GeV and 4.699 GeV by the BESIII detector at the BEPCII. No significant signals are observed, and the upper limits on the decay branching fractions are set to be B(Λ+c → Λπ+π−e+νe ) < 3.9 × 10−4 and B(Λ + c → pK0Sπ−e+νe ) < 3.3 × 10−4 at the 90% confidence level, respectively.
We report a search for a dark photon using 14.9~fb−1 of e+e− annihilation data taken at center-of-mass energies from 4.13 to 4.60~GeV with the BESIII detector operated at the BEPCII storage ring. The dark photon is assumed to be produced in the radiative annihilation process of e+e− and to predominantly decay into light dark matter particles, which escape from the detector undetected. The mass range from 1.5 to 2.9~GeV is scanned for the dark photon candidate, and no significant signal is observed. The mass dependent upper limits at the 90% confidence level on the coupling strength parameter ϵ for a dark photon coupling with an ordinary photon vary between 1.6×10−3 and 5.7×10−3.
In Ref. [1] the BESIII collaboration published a cross section measurement of the process e+e− → π+π− in the energy range between 600 and 900 MeV. In this corrigendum, we report a corrected evaluation of the statistical errors in terms of a fully propagated covariance matrix. The correction also yields a reduced statistical uncertainty for the hadronic vacuum polarization contribution to the anomalous magnetic moment of the muon, which now reads as aππ,LO μ (600 − 900 MeV) = (368.2 ± 1.5stat ± 3.3syst) × 10−10. The central values of the cross section measurement and of aππ,LO μ , as well as the systematic uncertainties remain unchanged.
We report on the measurements of directed flow v1 and elliptic flow v2 for hadrons (π±, K ±, K0 S , p, φ, Λ and ) from Au+Au collisions at √sN N = 3 GeV and v2 for (π±, K ±, p and p) at 27 and 54.4 GeV with the STAR experiment. While at the two higher energy midcentral collisions the numberof-constituent-quark (NCQ) scaling holds, at 3 GeV the v2 at midrapidity is negative for all hadrons and the NCQ scaling is absent. In addition, the v1 slopes at midrapidity for almost all observed hadrons are found to be positive, implying dominant repulsive baryonic interactions. The features of negative v2 and positive v1 slope at 3 GeV can be reproduced with a baryonic mean-field in transport model calculations. These results imply that the medium in such collisions is likely characterized by baryonic interactions.
In high-energy heavy-ion collisions, partonic collectivity is evidenced by the constituent quark number scaling of elliptic flow anisotropy for identified hadrons. A breaking of this scaling and dominance of baryonic interactions is found for identified hadron collective flow measurements in √sNN = 3 GeV Au+Au collisions. In this paper, we report measurements of the first- and second-order azimuthal anisotropic parameters, v1 and v2, of light nuclei (d, t, 3He, 4He) produced in √sNN = 3 GeV Au+Au collisions at the STAR experiment. An atomic mass number scaling is found in the measured v1 slopes of light nuclei at mid-rapidity. For the measured v2 magnitude, a strong rapidity dependence is observed. Unlike v2 at higher collision energies, the v2 values at mid-rapidity for all light nuclei are negative and no scaling is observed with the atomic mass number. Calculations by the Jet AA Microscopic Transport Model (JAM), with baryonic mean-field plus nucleon coalescence, are in good agreement with our observations, implying baryonic interactions dominate the collective dynamics in 3 GeV Au+Au collisions at RHIC.
Measurements of mass and Λ binding energy of 4ΛH and 4ΛHe in Au+Au collisions at sNN−−−√=3 GeV are presented, with an aim to address the charge symmetry breaking (CSB) problem in hypernuclei systems with atomic number A = 4. The Λ binding energies are measured to be 2.22±0.06(stat.)±0.14(syst.) MeV and 2.38±0.13(stat.)±0.12(syst.) MeV for 4ΛH and 4ΛHe, respectively. The measured Λ binding-energy difference is 0.16±0.14(stat.)±0.10(syst.) MeV for ground states. Combined with the γ-ray transition energies, the binding-energy difference for excited states is −0.16±0.14(stat.)±0.10(syst.) MeV, which is negative and comparable to the value of the ground states within uncertainties. These new measurements on the Λ binding-energy difference in A = 4 hypernuclei systems are consistent with the theoretical calculations that result in ΔB4Λ(1+exc)≈−ΔB4Λ(0+g.s.)<0 and present a new method for the study of CSB effect using relativistic heavy-ion collisions.