Refine
Year of publication
Language
- English (177)
Has Fulltext
- yes (177)
Is part of the Bibliography
- no (177)
Keywords
- BESIII (14)
- LHC (9)
- Branching fractions (4)
- Heavy-ion collisions (4)
- Quark-Gluon Plasma (4)
- ALICE (3)
- ALICE experiment (3)
- Elastic scattering (3)
- Hadronic decays (3)
- Initial state radiation (3)
Institute
- Physik (164)
- Frankfurt Institute for Advanced Studies (FIAS) (140)
- Informatik (126)
A massless particle beyond the Standard Model is searched for in the two-body decay Σ+→p+invisible using (1.0087±0.0044)×1010 J/ψ events collected at a center-of-mass energy of s√=3.097 GeV with the BESIII detector at the BEPCII collider. No significant signal is observed, and the upper limit on the branching fraction B(Σ+→p+invisible) is determined to be 3.2×10−5 at the 90% confidence level. This is the first search for a flavor-changing neutral current process with missing energy in hyperon decays which plays an important role in constraining new physics models.
Using a data sample of 448.1 × 106 ψ(3686) events collected with the BESIII detector at the BEPCII collider, we report the first observation of the electromagnetic Dalitz decay ψ(3686) → η e+e−, with significances of 7.0σ and 6.3σ when reconstructing the η meson via its decay modes η → γπ+π− and η → π+π−η (η → γγ ), respectively. The weighted average branching fraction is determined to be B(ψ(3686) → η e+e−) = (1.90 ± 0.25 ± 0.11) × 10−6, where the first uncertainty is statistical and the second systematic.
A massless particle beyond the Standard Model is searched for in the two-body decay Σ+→p+invisible using (1.0087±0.0044)×1010 J/ψ events collected at a center-of-mass energy of s√=3.097 GeV with the BESIII detector at the BEPCII collider. No significant signal is observed, and the upper limit on the branching fraction B(Σ+→p+invisible) is determined to be 3.2×10−5 at the 90% confidence level. This is the first search for a flavor-changing neutral current process with missing energy in hyperon decays which plays an important role in constraining new physics models.
Using 448.1 × 106 ψ(3686) decays collected with the BESIII detector at the BEPCII e+e− storage rings, the branching fractions and angular distributions of the decays χcJ → Ξ−Ξ¯¯¯¯+ and Ξ0Ξ¯¯¯¯0 (J = 0, 1, 2) are measured based on a partial-reconstruction technique. The decays χc1 → Ξ0Ξ¯¯¯¯0 and χc2 → Ξ0Ξ¯¯¯¯0 are observed for the first time with statistical significances of 7σ and 15σ, respectively. The results of this analysis are in good agreement with previous measurements and have significantly improved precision.
The electromagnetic process is studied with the initial-state-radiation technique using 7.5 fb−1 of data collected by the BESIII experiment at seven energy points from 3.773 to 4.600 GeV. The Born cross section and the effective form factor of the proton are measured from the production threshold to 3.0 GeV/ using the invariant-mass spectrum. The ratio of electric and magnetic form factors of the proton is determined from the analysis of the proton-helicity angular distribution.
Using e+e− collision data at ten center-of-mass energies between 2.644 and 3.080 GeV collected with the BESIII detector at BEPCII and corresponding to an integrated luminosity of about 500 pb−1, we measure the cross sections and effective form factors for the process e+e−→Ξ0Ξ¯0 utilizing a single-tag method. A fit to the cross section of e+e−→Ξ0Ξ¯0 with a pQCD-driven power function is performed, from which no significant resonance or threshold enhancement is observed. In addition, the ratio of cross sections for the processes e+e−→Ξ−Ξ¯+ and Ξ0Ξ¯0 is calculated using recent BESIII measurement and is found to be compatible with expectation from isospin symmetry.
Measurement of branching fractions for D meson decaying into ϕ meson and a pseudoscalar meson
(2019)
The four decay modes D0 → φπ0, D0 → φη, D+ → φπ+, and D+ → φK + are studied by using a data sample taken at the centre-of-mass energy √s = 3.773 GeV with the BESIII detector, corresponding to an integrated luminosity of 2.93 fb−1. The branching fractions of the first three decay modes are measured to be B(D0 → φπ0) = (1.168 ± 0.028 ± 0.028) × 10−3, B(D0 → φη) = (1.81 ± 0.46 ± 0.06) × 10−4, and B(D+ → φπ+) = (5.70 ± 0.05 ± 0.13) × 10−3, respectively, where the first uncertainties are statistical and the second are systematic. In addition, the upper limit of the branching fraction for D+ → φK+ is given to be 2.1 × 10−5 at the 90% confidence level. The ratio of B(D0 → φπ0) to B(D+ → φπ+) is calculated to be (20.49 ± 0.50 ± 0.45)%, which is consistent with the theoretical prediction based on isospin symmetry between these two decay modes.
Using 16 energy points of e+e− annihilation data collected in the vicinity of the J/ψ resonance with the BESIII detector and with a total integrated luminosity of around 100 pb−1, we study the relative phase between the strong and electromagnetic amplitudes of J/ψ decays. The relative phase between J/ψ electromagnetic decay and the continuum process (e+e− annihilation without the J/ψ resonance) is confirmed to be zero by studying the cross section lineshape of μ+μ− production. The relative phase between J/ψ strong and electromagnetic decays is then measured to be (84.9 ± 3.6)◦ or (−84.7 ± 3.1)◦ for the 2(π+π−)π0 final state by investigating the interference pattern between the J/ψ decay and the continuum process. This is the first measurement of the relative phase between J/ψ strong and electromagnetic decays into a multihadron final state using the lineshape of the production cross section. We also study the production lineshape of the multihadron final state ηπ+π− with η → π+π−π0, which provides additional information about the phase between the J/ψ electromagnetic decay amplitude and the continuum process. Additionally, the branching fraction of J/ψ → 2(π+π−)π0 is measured to be (4.73 ± 0.44)% or (4.85 ± 0.45)%, and the branching fraction of J/ψ → ηπ+π− is measured to be (3.78 ± 0.68) × 10−4. Both of them are consistent with the world average values. The quoted uncertainties include both statistical and systematic uncertainties, which are mainly caused by the low statistics.
Measurements of the branching fractions for D⁺ → Kₛ⁰Kₛ⁰K⁺, Kₛ⁰Kₛ⁰π⁺ and D⁰ → Kₛ⁰Kₛ⁰, Kₛ⁰Kₛ⁰Kₛ⁰
(2016)
By analyzing 2.93 fb−1 of data taken at the ψ(3770) resonance peak with the BESIII detector, we measure the branching fractions for the hadronic decays D+ → K0S K0S K +, D+ → K0S K0Sπ+, D0 → K0S K0S and D0 → K0S K0S K0S . They are determined to be B(D+ → K0S K0S K +) = (2.54 ± 0.05stat. ± 0.12sys.) × 10−3, B(D+ → K0S K0Sπ+) = (2.70 ± 0.05stat. ± 0.12sys.) × 10−3, B(D0 → K0S K0S ) = (1.67 ± 0.11stat. ± 0.11sys.) × 10−4 and B(D0 → K0S K0S K0S ) = (7.21 ± 0.33stat. ± 0.44sys.) × 10−4, where the second one is measured for the first time and the others are measured with significantly improved precision over the previous measurements.
Measurements of cross section of e⁺e⁻ → pp¯π⁰ at center-of-mass energies between 4.008 and 4.600 GeV
(2017)
Based on e+e− annihilation data samples collected with the BESIII detector at the BEPCII collider at 13 center-of-mass energies from 4.008 to 4.600 GeV, measurements of the Born cross section of e+e− → pp¯π0 are performed. No significant resonant structure is observed in the measured energy dependence of the cross section. The upper limit on the Born cross section of e+e− → Y (4260) → pp¯π0 at the 90% C.L. is determined to be 0.01 pb. The upper limit on the ratio of the branching fractions B(Y (4260)→pp¯π0) B(Y (4260)→π+π− J/ψ) at the 90% C.L. is determined to be 0.02%.