Refine
Year of publication
Document Type
- Article (21)
- Conference Proceeding (3)
- Doctoral Thesis (1)
Language
- English (25)
Has Fulltext
- yes (25)
Is part of the Bibliography
- no (25)
Keywords
- Accelerators & Beams (2)
- Atomic, Molecular & Optical (2)
- Charge-transfer collisions (2)
- AGB star (1)
- Accelerators & storage rings (1)
- Aktivierungsmethode (1)
- Atomic & molecular beams (1)
- Atoms (1)
- Beam loss (1)
- Circular accelerators (1)
Institute
- Physik (24)
- ELEMENTS (12)
- Frankfurt Institute for Advanced Studies (FIAS) (1)
The 35 neutron deficient nuclides known as the p nuclei are sysnthesized mainly in the so-called γ process. Taking place in explosive supernova events, the existing seed distribution from prior nucleosynthesis is altered by photodisintegration reactions of the types (γ,n), (γ,p) and (γ,α).
The bulk of reaction rates needed in network calculations of the γ process are predicted by the Hauser-Feshbach Model. When using this theory, the largest uncertainties stem from the interaction between charged particles and nuclei described by optical model potentials.
An improvement of these potentials can be achieved by comparison to measured cross section data. However, because of the low energies of interest for nuclear astrophysics and the resulting low cross sections, suitable data are scarce.
This thesis extends the corresponding database by measurement of the reactions 165Ho(α, n), 166Er(α, n), 169Tm(p,n) and 175Lu(p,n) using the activation technique. While not particularly important for the γ process, the selected (α,n) and (p,n) reactions exhibit nearly exclusive sensitivity to the α- or proton-nucleus potential, respectively. Therefore, the results presented here are well suited to test and improve the predictive power of currently available parameterizations of these potentials
Stored and cooled, highly-charged ions offer unprecedented capabilities for precision studies in the realm of atomic, nuclear structure and astrophysics[1]. After the successful investigation of the 96Ru(p,7)97Rh reaction cross section in 2009[2], the first measurement of the 124Xe(p,7)125Cs reaction cross section has been performed with decelerated, fully-ionized 124Xe ions in 2016 at the Experimental Storage Ring (ESR) of GSI[3]. Using a Double Sided Silicon Strip Detector, introduced directly into the ultra-high vacuum environment of a storage ring, the 125Cs proton-capture products have been successfully detected. The cross section has been measured at 5 different energies between 5.5AMeV and 8AMeV, on the high energy tail of the Gamow-window for hot, explosive scenarios such as supernovae and X-ray binaries. The elastic scattering on the H2 gas jet target is the major source of background to count the (p,7) events. Monte Carlo simulations show that an additional slit system in the ESR in combination with the energy information of the Si detector will enable background free measurements of the proton-capture products. The corresponding hardware is being prepared and will increase the sensitivity of the method tremendously.
The p nucleus 92Mo is believed to be mainly produced through photodisintegration reactions in type II supernovae. However, this production scenario cannot solely account for the observed solar relative isotopic abundance of 92Mo. Additional production scenarios have been suggested to explain this discrepancy. One of these scenarios could be the production of 92Mo in type Ia supernovae via a chain of proton-capture reactions. To verify this scenario, an accurate knowledge of the involved reaction rates is important. We measured the cross section of 90Zr(p,γ) reaction using an enriched 90Zr target by means of in-beam γ-ray spectroscopy in the energy range between 3.6MeV and 5.1MeV. Since the reactions 90Zr(p,γ) and 91Zr(p,n) produce the same nucleus, the contributions of both reactions have to be disentangled. This procedure is explained in this contribution in detail.
Neutron capture cross sections of unstable isotopes are important for neutron-induced nucleosynthesis as well as for technological applications. A combination of a radioactive beam facility, an ion storage ring and a high flux reactor would allow a direct measurement of neutron induced reactions over a wide energy range on isotopes with half lives down to minutes. The idea is to measure neutron-induced reactions on radioactive ions in inverse kinematics. This means, the radioactive ions will pass through a neutron target. In order to efficiently use the rare nuclides as well as to enhance the luminosity, the exotic nuclides can be stored in an ion storage ring. The neutron target can be the core of a research reactor, where one of the central fuel elements is replaced by the evacuated beam pipe of the storage ring. Using particle detectors and Schottky spectroscopy, most of the important neutron-induced reactions, such as (n,γ), (n,p), (n,α), (n,2n), or (n,f), could be investigated.
We present a nucleosynthesis sensitivity study for the γ-process in a Supernova type II model within the NuGrid research platform. The simulations aimed at identifying the relevant local production and destruction rates for the p-nuclei of molybdenum and at determining the sensitivity of the final abundances to these rates. We show that local destruction rates strongly determine the abundance of 92Mo and 94Mo, and quantify the impact.
We report the first measurement of low-energy proton-capture cross sections of 124Xe in a heavy-ion storage ring. 124Xe54+ ions of five different beam energies between 5.5 and 8 AMeV were stored to collide with a windowless hydrogen target. The 125Cs reaction products were directly detected. The interaction energies are located on the high energy tail of the Gamow window for hot, explosive scenarios such as supernovae and x-ray binaries. The results serve as an important test of predicted astrophysical reaction rates in this mass range. Good agreement in the prediction of the astrophysically important proton width at low energy is found, with only a 30% difference between measurement and theory. Larger deviations are found above the neutron emission threshold, where also neutron and γ widths significantly impact the cross sections. The newly established experimental method is a very powerful tool to investigate nuclear reactions on rare ion beams at low center-of-mass energies.
The radiative electron capture (REC) into the K shell of bare Xe ions colliding with a hydrogen gas target has been investigated. In this study, the degree of linear polarization of the K-REC radiation was measured and compared with rigorous relativistic calculations as well as with the previous results recorded for U92+. Owing to the improved detector technology, a significant gain in precision of the present polarization measurement is achieved compared to the previously published results. The obtained data confirms that for medium-Z ions such as Xe, the REC process is a source of highly polarized x rays which can easily be tuned with respect to the degree of linear polarization and the photon energy. We argue, in particular, that for relatively low energies the photons emitted under large angles are almost fully linear polarized.
The 124Xe(p,γ) reaction has been measured for the first time at energies around the Gamow window by using stored ions at the ESR facility. The desired beam energies below 10 MeV/u introduce new experimental challenges like windowless ions detection under UHV conditions, extremely short beam lifetimes and efficient beam deceleration and cooling, all of which have been successfully met.
The nucleosynthesis of elements beyond iron is dominated by neutron captures in the s and r processes. However, 32 stable, proton-rich isotopes cannot be formed during those processes, because they are shielded from the s-process flow and r-process β-decay chains. These nuclei are attributed to the p and rp process.
For all those processes, current research in nuclear astrophysics addresses the need for more precise reaction data involving radioactive isotopes. Depending on the particular reaction, direct or inverse kinematics, forward or time-reversed direction are investigated to determine or at least to constrain the desired reaction cross sections.
The Facility for Antiproton and Ion Research (FAIR) will offer unique, unprecedented opportunities to investigate many of the important reactions. The high yield of radioactive isotopes, even far away from the valley of stability, allows the investigation of isotopes involved in processes as exotic as the r or rp processes.
The electron-capture process was studied for Xe54+ colliding with H2 molecules at the internal gas target of the Experimental Storage Ring (ESR) at GSI, Darmstadt. Cross-section values for electron capture into excited projectile states were deduced from the observed emission cross section of Lyman radiation, being emitted by the hydrogenlike ions subsequent to the capture of a target electron. The ion beam energy range was varied between 5.5 and 30.9 MeV/u by applying the deceleration mode of the ESR. Thus, electron-capture data were recorded at the intermediate and, in particular, the low-collision-energy regime, well below the beam energy necessary to produce bare xenon ions. The obtained data are found to be in reasonable qualitative agreement with theoretical approaches, while a commonly applied empirical formula significantly overestimates the experimental findings.