Refine
Document Type
- Article (12)
- Doctoral Thesis (1)
Language
- English (13)
Has Fulltext
- yes (13)
Is part of the Bibliography
- no (13)
Keywords
- neurodegeneration (3)
- NR4A2 (2)
- PPARγ (2)
- nuclear receptor (2)
- polypharmacology (2)
- transcription factor (2)
- Alzheimer’s disease (1)
- Anandamide (1)
- Biochemistry (1)
- Biophysical chemistry (1)
Institute
- Biochemie, Chemie und Pharmazie (8)
- Medizin (4)
- Pharmazie (3)
- Biochemie und Chemie (2)
Designed multitarget ligands are a popular approach to generating efficient and safe drugs, and fragment-based strategies have been postulated as a versatile avenue to discover multitarget ligand leads. To systematically probe the potential of fragment-based multiple ligand discovery, we have employed a large fragment library for comprehensive screening on five targets chosen from proteins for which multitarget ligands have been successfully developed previously (soluble epoxide hydrolase, leukotriene A4 hydrolase, 5-lipoxygenase, retinoid X receptor, farnesoid X receptor). Differential scanning fluorimetry served as primary screening method before fragments hitting at least two targets were validated in orthogonal assays. Thereby, we obtained valuable fragment leads with dual-target engagement for six out of ten target combinations. Our results demonstrate the applicability of fragment-based approaches to identify starting points for polypharmacological compound development with certain limitations.
Gout is the most common arthritic disease in human but was long neglected and therapeutic options are not satisfying. However, with the recent approval of the urate transporter inhibitor lesinurad, gout treatment has experienced a major innovation. Here we show that lesinurad possesses considerable modulatory potency on peroxisome proliferator-activated receptor γ (PPARγ). Since gout has a strong association with metabolic diseases such as type 2 diabetes, this side-activity appears as very valuable contributing factor to the clinical efficacy profile of lesinurad. Importantly, despite robustly activating PPARγ in vitro, lesinurad lacked adipogenic activity, which seems due to differential coactivator recruitment and is characterized as selective PPARγ modulator (sPPARγM).
Hepatocyte nuclear factor 4α (HNF4α) is a ligand-sensing transcription factor and presents as a potential drug target in metabolic diseases and cancer. In humans, mutations in the HNF4α gene cause maturity-onset diabetes of the young (MODY), and the elevated activity of this protein has been associated with gastrointestinal cancers. Despite the high therapeutic potential, available ligands and structure–activity relationship knowledge for this nuclear receptor are scarce. Here, we disclose a chemically diverse collection of orthogonally validated fragment-like activators as well as inverse agonists, which modulate HNF4α activity in a low micromolar range. These compounds demonstrate the druggability of HNF4α and thus provide a starting point for medicinal chemistry as well as an early tool for chemogenomics.
In Reaktion auf zellulären Stress wie etwa Schädigungen der DNA oder die vermehrte Aktivität von Onkogenen aktivieren vorgeschaltete Signalkaskaden den Transkriptionsfaktor (TF) p53. Dieser kann über die Aktivierung der Expression von Zielgenen wiederum die Zellteilung stoppen, die Reparatur von DNA Schäden initiieren oder in schweren Fällen die Eliminierung der Zelle durch Apoptose einleiten. Ist p53 durch Mutationen deaktiviert, können sich entartete somatische Zellen vermehren und in der Folge Krebs entstehen.
In Wirbeltieren finden sich neben p53 mit p63 und p73 zwei weitere TFs, welche während der Evolution aus dem gleichen gemeinsamen Vorläufer durch Genduplikationen hervorgegangen sind. Die drei TFs sind modular aufgebaut und alle Isoformen verfügen jeweils minimal über eine DNA Bindungsdomäne (DBD) und eine Tetramerisierungsdomäne (TD). Werden die p53 ähnlichen TFs aktiviert, lagern sie sich über die TD vermittelt zu Tetrameren zusammen, wodurch ihre DBDs kooperativ an DNA Sequenzmotive binden können. Die DBD ist auch über große phylogenetische Abstände hinweg hoch konserviert, wodurch bereits gezeigt werden konnte, dass auch primitive vielzellige Tiere bereits Homologe dieser TF Familie besitzen. Im Vergleich zur DBD variiert die Proteinsequenz der TD deutlich stärker, was andeutet, dass deren Struktur im Laufe der Evolution erhebliche Veränderungen durchlaufen hat. Diese Veränderungen aufzuklären ist das übergeordnete Forschungsvorhaben zu dem diese Dissertationsschrift beiträgt.
Ciona intestinalis (C.int.) ist eine Spezies aus dem Unterstamm der Manteltiere. Diese sind die engsten lebenden Verwandten der Wirbeltiere und C.int. ist ein populärer Modelorganismus für die Erforschung der Embryonalentwicklung. Sein Genom kodiert für zwei p53 ähnliche TFs, welche mit p53/p73-a und p53/p73-b bezeichnet werden. Die Struktur ihrer TDs wurde im Rahmen der vorliegenden Arbeit mittels Kernspinresonanz (NMR) Spektroskopie untersucht.
Die TD von menschlichem p53 (hp53) ist ein Dimer aus Dimeren. Jedes Monomer formt einen beta-Strang und eine alpha-Helix. Im primären Dimer lagern diese sich so zusammen, dass ein beta-Faltblatt entsteht und die alpha-Helices mit entgegen gesetzter Orientierung der Länge nach aneinander packen. Zwei dieser Dimer lagern sich dann so zum Tetramer zusammen, dass zwischen pol-ständigen beta-Faltblättern ein Bündel aus vier Helices entsteht. Dieses Motiv ist auch in den TDs der Ciona Proteine hochkonserviert und wird im Folgenden als Kern?TD bezeichnet. In den TDs von menschlichem p63 und p73 (hp63 und hp73) verfügt jedes Monomer an seinem C-terminus noch über eine zweite Helix. Die zweiten Helices eines jeden Dimers greifen wie Klammern um das jeweils andere primäre Dimer und stabilisieren so das Tetramer. Entscheidend für die stabile Anbindung an die Kern?TD ist dabei ein charakteristisches Tyrosin-Arginin (YR) Motiv in der zweiten Helix, welches sich auch in der Sequenz der TD von C.int. p53/p73-a wiederfindet. Analysen der Sekundärstruktur auf Basis von NMR Experimenten ergaben jedoch, dass die TD von C.int. p53/p73-a bei 25°C keine zweite Helix ausbildet. Mit Hilfe von chimären TD Peptiden, in denen Teile der Ciona Sequenz gegen die entsprechenden Abschnitte von hp73 ausgetauscht wurden, konnte gezeigt werden, dass die Kern TD von C.int. p53/p73-a fähig ist eine zweite Helix zu stabilisieren und hierfür neben dem YR Motiv auch der Sequenzabschnitt zwischen erster und zweiter Helix entscheidend ist. Stabilisierende Substitutionen in diesem Bereich bewirkten ebenso wie ein Absenken der Temperatur die Ausbildung einer zweiten Helix, welche jedoch im Gegensatz zu jener in hp73 nur transient faltet und auch nicht essentiell für die Bildung des Tetramers ist, wohl aber dessen Stabilität erhöht.
Spezifisch in der Entwicklungslinie von Ciona kam es dazu, dass eine, für eine entsprechende Vorläuferversion von C.int. p53/p73-a kodierende, mRNA spontan zurück in DNA übersetzt und ins Genom eingefügt wurde. Die durch diese Retrotransposition erzeugte neue Genkopie C.int. p53/p73-b muss demnach ursprünglich einmal für die gleiche Proteinsequenz kodiert haben, innerhalb der TD finden sich konservierte Reste jedoch nur im Bereich der Kern TD.
Von der TD von C.int. p53/p73-b wurde die molekulare Struktur in freier Lösung mittels NMR ermittelt. Diese zeigte, dass interessanterweise in der TD von C.int. p53/p73-b jedes Monomer am C-terminus eine stabil gefaltete, zweite Helix besitzt. Obwohl diese zweite Helix sich aus einer Sequenz faltet, die keinerlei Sequenzhomologie zu homologen Proteinen aus Wirbeltieren aufweist, lagert sie sich in einer Position auf die Kern TD, welche der in hp73 sehr nahe kommt. Da die primären Dimere der Kern TD aber anders als in hp63 und hp73 durch Salzbrücken miteinander verbunden sind, ist die zweite Helix jedoch nicht essentiell, um das Tetramer zu stabilisieren. Vermutlich kommt der zweiten Helix von C.int. p53/p73-b vielmehr u.a. die Aufgabe zu die Bildung von Heterotetrameren aus C.int. p53/p73-a und –b zu unterbinden.
Zusammengenommen zeigen die Ergebnisse, dass die Architektur der TD mit zweiter Helix bereits der Prototyp für die TDs aller p53 ähnlichen Proteine der Wirbel- und Manteltiere war und die als eine Art Klammer das Tetramer stabilisierende zweite Helix sich nicht erst während der Evolution der Wirbeltiere entwickelt hat.
Nuclear receptors (NRs) activate transcription of target genes in response to binding of ligands to their ligand-binding domains (LBDs). Typically, in vitro assays use either gene expression or the recruitment of coactivators to the isolated LBD of the NR of interest to measure NR activation. However, this approach ignores that NRs function as homo- as well as heterodimers and that the LBD harbors the main dimerization interface. Cofactor recruitment is thereby interconnected with oligomerization status as well as ligand occupation of the partnering LBD through allosteric cross talk. Here we present a modular set of homogeneous time-resolved FRET–based assays through which we investigated the activation of PPARγ in response to ligands and the formation of heterodimers with its obligatory partner RXRα. We introduced mutations into the RXRα LBD that prevent coactivator binding but do not interfere with LBD dimerization or ligand binding. This enabled us to specifically detect PPARγ coactivator recruitment to PPARγ:RXRα heterodimers. We found that the RXRα agonist SR11237 destabilized the RXRα homodimer but promoted formation of the PPARγ:RXRα heterodimer, while being inactive on PPARγ itself. Of interest, incorporation of PPARγ into the heterodimer resulted in a substantial gain in affinity for coactivator CBP-1, even in the absence of ligands. Consequently, SR11237 indirectly promoted coactivator binding to PPARγ by shifting the oligomerization preference of RXRα toward PPARγ:RXRα heterodimer formation. These results emphasize that investigation of ligand-dependent NR activation should take NR dimerization into account. We envision these assays as the necessary assay tool kit for investigating NRs that partner with RXRα.
Several lines of evidence suggest the ligand-sensing transcription factor Nurr1 as a promising target to treat neurodegenerative diseases. Nurr1 modulators to validate and exploit this therapeutic potential are rare, however. To identify novel Nurr1 agonist chemotypes, we have employed the Nurr1 activator amodiaquine as template for microscale analogue library synthesis. The first set of analogues was based on the 7-chloroquiolin-4-amine core fragment of amodiaquine and revealed superior N-substituents compared to diethylaminomethylphenol contained in the template. A second library of analogues was subsequently prepared to replace the chloroquinolineamine scaffold. The two sets of analogues enabled a full scaffold hop from amodiaquine to a novel Nurr1 agonist sharing no structural features with the lead but comprising superior potency on Nurr1. Additionally, pharmacophore modeling based on the entire set of active and inactive analogues suggested key features for Nurr1 agonists.
Endocannabinoids are important lipid-signaling mediators. Both protective and deleterious effects of endocannabinoids in the cardiovascular system have been reported but the mechanistic basis for these contradicting observations is unclear. We set out to identify anti-inflammatory mechanisms of endocannabinoids in the murine aorta and in human vascular smooth muscle cells (hVSMC). In response to combined stimulation with cytokines, IL-1β and TNFα, the murine aorta released several endocannabinoids, with anandamide (AEA) levels being the most significantly increased. AEA pretreatment had profound effects on cytokine-induced gene expression in hVSMC and murine aorta. As revealed by RNA-Seq analysis, the induction of a subset of 21 inflammatory target genes, including the important cytokine CCL2 was blocked by AEA. This effect was not mediated through AEA-dependent interference of the AP-1 or NF-κB pathways but rather through an epigenetic mechanism. In the presence of AEA, ATAC-Seq analysis and chromatin-immunoprecipitations revealed that CCL2 induction was blocked due to increased levels of H3K27me3 and a decrease of H3K27ac leading to compacted chromatin structure in the CCL2 promoter. These effects were mediated by recruitment of HDAC4 and the nuclear corepressor NCoR1 to the CCL2 promoter. This study therefore establishes a novel anti-inflammatory mechanism for the endogenous endocannabinoid AEA in vascular smooth muscle cells. Furthermore, this work provides a link between endogenous endocannabinoid signaling and epigenetic regulation.
Dimerization of Taspase1 activates an intrinsic serine protease function that leads to the catalytic Thr234 residue, which allows to catalyze the consensus sequence Q−3X−2D−1⋅G1X2D3D4, present in Trithorax family members and TFIIA. Noteworthy, Taspase1 performs only a single hydrolytic step on substrate proteins, which makes it impossible to screen for inhibitors in a classical screening approach. Here, we report the development of an HTRF reporter assay that allowed the identification of an inhibitor, Closantel sodium, that inhibits Taspase1 in a noncovalent fashion (IC50 = 1.6 μM). The novel inhibitor interferes with the dimerization step and/or the intrinsic serine protease function of the proenzyme. Of interest, Taspase1 is required to activate the oncogenic functions of the leukemogenic AF4-MLL fusion protein and was shown in several studies to be overexpressed in many solid tumors. Therefore, the inhibitor may be useful for further validation of Taspase1 as a target for cancer therapy.
Nuclear receptor related 1 (Nurr1) is an orphan ligand-activated transcription factor and considered as neuroprotective transcriptional regulator with great potential as therapeutic target for neurodegenerative diseases. However, the collection of available Nurr1 modulators and mechanistic understanding of Nurr1 are limited. Here, we report the discovery of several structurally diverse non-steroidal anti-inflammatory drugs as inverse Nurr1 agonists demonstrating that Nurr1 activity can be regulated bidirectionally. As chemical tools, these ligands enable unraveling the co-regulatory network of Nurr1 and the mode of action distinguishing agonists from inverse agonists. In addition to its ability to dimerize, we observe an ability of Nurr1 to recruit several canonical nuclear receptor co-regulators in a ligand-dependent fashion. Distinct dimerization states and co-regulator interaction patterns arise as discriminating factors of Nurr1 agonists and inverse agonists. Our results contribute a valuable collection of Nurr1 modulators and relevant mechanistic insights for future Nurr1 target validation and drug discovery.
The retinoid X receptor (RXR) is a ligand-sensing transcription factor acting mainly as a universal heterodimer partner for other nuclear receptors. Despite presenting as a potential therapeutic target for cancer and neurodegeneration, adverse effects typically observed for RXR agonists, likely due to the lack of isoform selectivity, limit chemotherapeutic application of currently available RXR ligands. The three human RXR isoforms exhibit different expression patterns; however, they share high sequence similarity, presenting a major obstacle toward the development of subtype-selective ligands. Here, we report the discovery of the saturated fatty acid, palmitic acid, as an RXR ligand and disclose a uniform set of crystal structures of all three RXR isoforms in an active conformation induced by palmitic acid. A structural comparison revealed subtle differences among the RXR subtypes. We also observed an ability of palmitic acid as well as myristic acid and stearic acid to induce recruitment of steroid receptor co-activator 1 to the RXR ligand-binding domain with low micromolar potencies. With the high, millimolar endogenous concentrations of these highly abundant lipids, our results suggest their potential involvement in RXR signaling.