### Refine

#### Document Type

- Working Paper (10)

#### Language

- English (10)

#### Has Fulltext

- yes (10)

#### Is part of the Bibliography

- no (10)

#### Keywords

- Lambda-Kalkül (8)
- Operationale Semantik (6)
- Programmiersprache (5)
- Nebenläufigkeit (3)
- Funktionale Programmiersprache (2)
- Pufferspeicher (2)
- Alice ML (1)
- Contextual Equivalence (1)
- Futures (1)
- Lambda Calculus (1)

#### Institute

- Informatik (10)

We investigate methods and tools for analysing translations between programming languages with respect to observational semantics. The behaviour of programs is observed in terms of may- and must-convergence in arbitrary contexts, and adequacy of translations, i.e., the reﬂection of program equivalence, is taken to be the fundamental correctness condition. For compositional translations we propose a notion of convergence equivalence as a means for proving adequacy. This technique avoids explicit reasoning about contexts, and is able to deal with the subtle role of typing in implementations of language extension.

Motivated by the question of correctness of a specific implementation of concurrent buffers in the lambda calculus with futures underlying Alice ML, we prove that concurrent buffers and handled futures can correctly encode each other. Correctness means that our encodings preserve and reflect the observations of may- and must-convergence. This also shows correctness wrt. program semantics, since the encodings are adequate translations wrt. contextual semantics. While these translations encode blocking into queuing and waiting, we also provide an adequate encoding of buffers in a calculus without handles, which is more low-level and uses busy-waiting instead of blocking. Furthermore we demonstrate that our correctness concept applies to the whole compilation process from high-level to low-level concurrent languages, by translating the calculus with buffers, handled futures and data constructors into a small core language without those constructs.

Motivated by our experience in analyzing properties of translations between programming languages with observational semantics, this paper clarifies the notions, the relevant questions, and the methods, constructs a general framework, and provides several tools for proving various correctness properties of translations like adequacy and full abstractness. The presented framework can directly be applied to the observational equivalences derived from the operational semantics of programming calculi, and also to other situations, and thus has a wide range of applications.

Various concurrency primitives have been added to sequential programming languages, in order to turn them concurrent. Prominent examples are concurrent buffers for Haskell, channels in Concurrent ML, joins in JoCaml, and handled futures in Alice ML. Even though one might conjecture that all these primitives provide the same expressiveness, proving this equivalence is an open challenge in the area of program semantics. In this paper, we establish a first instance of this conjecture. We show that concurrent buffers can be encoded in the lambda calculus with futures underlying Alice ML. Our correctness proof results from a systematic method, based on observational semantics with respect to may and must convergence.

Reasoning about the correctness of program transformations requires a notion of program equivalence. We present an observational semantics for the concurrent lambda calculus with futures Lambda(fut), which formalizes the operational semantics of the programming language Alice ML. We show that natural program optimizations, as well as partial evaluation with respect to deterministic rules, are correct for Lambda(fut). This relies on a number of fundamental properties that we establish for our observational semantics.

We investigate methods and tools for analyzing translations between programming languages with respect to observational semantics. The behavior of programs is observed in terms of may- and mustconvergence in arbitrary contexts, and adequacy of translations, i.e., the reflection of program equivalence, is taken to be the fundamental correctness condition. For compositional translations we propose a notion of convergence equivalence as a means for proving adequacy. This technique avoids explicit reasoning about contexts, and is able to deal with the subtle role of typing in implementations of language extensions.

We investigate methods and tools for analysing translations between programming languages with respect to observational semantics. The behaviour of programs is observed in terms of may- and mustconvergence in arbitrary contexts, and adequacy of translations, i.e., the reflection of program equivalence, is taken to be the fundamental correctness condition. For compositional translations we propose a notion of convergence equivalence as a means for proving adequacy. This technique avoids explicit reasoning about contexts, and is able to deal with the subtle role of typing in implementations of language extensions.

Motivated by the question of correctness of a specific implementation of concurrent buffers in the lambda calculus with futures underlying Alice ML, we prove that concurrent buffers and handled futures can correctly encode each other. Correctness means that our encodings preserve and reflect the observations of may- and must-convergence, and as a consequence also yields soundness of the encodings with respect to a contextually defined notion of program equivalence. While these translations encode blocking into queuing and waiting, we also describe an adequate encoding of buffers in a calculus without handles, which is more low-level and uses busy-waiting instead of blocking. Furthermore we demonstrate that our correctness concept applies to the whole compilation process from high-level to low-level concurrent languages, by translating the calculus with buffers, handled futures and data constructors into a small core language without those constructs.