Refine
Document Type
- Article (11)
Has Fulltext
- yes (11)
Is part of the Bibliography
- no (11)
Keywords
- Lung failure (3)
- Biomarker (2)
- CC16 (2)
- Inflammation (2)
- Tight junctions (2)
- Uteroglobin (2)
- inflammation (2)
- polytrauma (2)
- sepsis (2)
- uteroglobin (2)
Institute
- Medizin (11)
Sepsis is a serious clinical condition which can cause life-threatening organ dysfunction, and has limited therapeutic options. The paradigm of limiting excessive inflammation and promoting anti-inflammatory responses is a simplified concept. Yet, the absence of intrinsic anti-inflammatory signaling at the early stage of an infection can lead to an exaggerated activation of immune cells, including monocytes and macrophages. There is emerging evidence that endogenous molecules control those mechanisms. Here we aimed to identify and describe the dynamic changes in monocyte and macrophage subsets and lung damage in CL57BL/6N mice undergoing blunt chest trauma with subsequent cecal ligation and puncture. We showed that early an increase in systemic and activated Ly6C+CD11b+CD45+Ly6G− monocytes was paralleled by their increased emigration into lungs. The ratio of pro-inflammatory Ly6ChighCD11b+CD45+Ly6G− to patrolling Ly6ClowCD11b+CD45+Ly6G− monocytes significantly increased in blood, lungs and bronchoalveolar lavage fluid (BALF) suggesting an early transition to inflammatory phenotypes during early sepsis development. Similar to monocytes, the level of pro-inflammatory Ly6ChighCD45+F4/80+ macrophages increased in lungs and BALF, while tissue repairing Ly6ClowCD45+F4/80+ macrophages declined in BALF. Levels of inflammatory mediators TNF-α and MCP-1 in blood and RAGE in lungs and BALF were elevated, and besides their boosting of inflammation via the recruitment of cells, they may promote monocyte and macrophage polarization, respectively, toward the pro-inflammatory phenotype. Neutralization of uteroglobin increased pro-inflammatory cytokine levels, activation of inflammatory phenotypes and their recruitment to lungs; concurrent with increased pulmonary damage in septic mice. In in vitro experiments, the influence of uteroglobin on monocyte functions including migratory behavior, TGF-β1 expression, cytotoxicity and viability were proven. These results highlight an important role of endogenous uteroglobin as intrinsic anti-inflammatory signal upon sepsis-induced early lung injury, which modules the early monocyte/macrophages driven inflammation.
Background: Sepsis frequently occurs after major trauma and is closely associated with dysregulations in the inflammatory/complement and coagulation system. Thrombin-activatable fibrinolysis inhibitor (TAFI) plays a dual role as an anti-fibrinolytic and anti-inflammatory factor by downregulating complement anaphylatoxin C5a. The purpose of this study was to investigate the association between TAFI and C5a levels and the development of post-traumatic sepsis. Furthermore, the predictive potential of both TAFI and C5a to indicate sepsis occurrence in polytraumatized patients was assessed. Methods: Upon admission to the emergency department (ED) and daily for the subsequent ten days, circulating levels of TAFI and C5a were determined in 48 severely injured trauma patients (injury severity score (ISS) ≥ 16). Frequency matching according to the ISS in septic vs. non-septic patients was performed. Trauma and physiologic characteristics, as well as outcomes, were assessed. Statistical correlation analyses and cut-off values for predicting sepsis were calculated. Results: Fourteen patients developed sepsis, while 34 patients did not show any signs of sepsis (no sepsis). Overall injury severity, as well as demographic parameters, were comparable between both groups (ISS: 25.78 ± 2.36 no sepsis vs. 23.46 ± 2.79 sepsis). Septic patients had significantly increased C5a levels (21.62 ± 3.14 vs. 13.40 ± 1.29 ng/mL; p < 0.05) and reduced TAFI levels upon admission to the ED (40,951 ± 5637 vs. 61,865 ± 4370 ng/mL; p < 0.05) compared to the no sepsis group. Negative correlations between TAFI and C5a (p = 0.0104) and TAFI and lactate (p = 0.0423) and positive correlations between C5a and lactate (p = 0.0173), as well as C5a and the respiratory rate (p = 0.0266), were found. In addition, correlation analyses of both TAFI and C5a with the sequential (sepsis-related) organ failure assessment (SOFA) score have confirmed their potential as early sepsis biomarkers. Cut-off values for predicting sepsis were 54,857 ng/mL for TAFI with an area under the curve (AUC) of 0.7550 (p = 0.032) and 17 ng/mL for C5a with an AUC of 0.7286 (p = 0.034). Conclusion: The development of sepsis is associated with early decreased TAFI and increased C5a levels after major trauma. Both elevated C5a and decreased TAFI may serve as promising predictive factors for the development of sepsis after polytrauma.
miR-142-3p expression is predictive for severe traumatic brain injury (TBI) in trauma patients
(2020)
Background: Predictive biomarkers in biofluids are the most commonly used diagnostic method, but established markers in trauma diagnostics lack accuracy. This study investigates promisingmicroRNAs(miRNA)releasedfromaffectedtissueafterseveretraumathathavepredictive values for the effects of the injury.
Methods: A retrospective analysis of prospectively collected data and blood samples of n = 33 trauma patients (ISS≥16) is provided. Levels of miR-9-5p, -124-3p, -142-3p, -219a-5p, -338-3pand-423-3p inseverelyinjuredpatients (PT)withouttraumatic braininjury (TBI) or with severe TBI (PT + TBI) and patients with isolated TBI (isTBI) were measured within 6 h after trauma.
Results: The highest miR-423-3p expression was detected in patients with severe isTBI, followed by patients with PT + TBI, and lowest levels were found in PT patients without TBI (2−∆∆Ct,p = 0.009). ApositivecorrelationbetweenmiR-423-3plevelandincreasingAIShead (p = 0.001) and risk of mortality (RISC II, p = 0.062) in trauma patients (n = 33) was found. ROC analysis of miR-423-3p levels revealed them as statistically significant to predict the severity of brain injury in trauma patients (p = 0.006). miR-124-3p was only found in patients with severe TBI, miR-338-3p was shown in all trauma groups. miR-9-5p, miR-142-3p and miR-219a-5p could not be detected in any of the four groups. Conclusion: miR-423-3p expression is significantly elevated after isolated traumatic braininjuryandpredictableforsevereTBIinthefirsthoursaftertrauma. miR-423-3pcouldrepresent a promising new biomarker to identify severe isolated TBI.
Blunt thoracic trauma (TxT) deteriorates clinical post-injury outcomes. Ongoing inflammatory changes promote the development of post-traumatic complications, frequently causing Acute Lung Injury (ALI). Club Cell Protein (CC)16, a pulmonary anti-inflammatory protein, correlates with lung damage following TxT. Whether CC16-neutralization influences the inflammatory course during ALI is elusive. Ninety-six male CL57BL/6N mice underwent a double hit model of TxT and cecal ligation puncture (CLP, 24 h post-TxT). Shams underwent surgical procedures. CC16 was neutralized by the intratracheal application of an anti-CC16-antibody, either after TxT (early) or following CLP (late). Euthanasia was performed at 6 or 24 h post-CLP. Systemic and pulmonary levels of IL-6, IL-1β, and CXCL5 were determined, the neutrophils were quantified in the bronchoalveolar lavage fluid, and histomorphological lung damage was assessed. ALI induced a significant systemic IL-6 increase among all groups, while the local inflammatory response was most prominent after 24 h in the double-hit groups as compared to the shams. Significantly increased neutrophilic infiltration upon double hit was paralleled with the enhanced lung damage in all groups as compared to the sham, after 6 and 24 h. Neutralization of CC16 did not change the systemic inflammation. However, early CC16-neutralization increased the neutrophilic infiltration and lung injury at 6 h post-CLP, while 24 h later, the lung injury was reduced. Late CC16-neutralization increased neutrophilic infiltration, 24 h post-CLP, and was concurrent with an enhanced lung injury. The data confirmed the anti-inflammatory potential of endogenous CC16 in the murine double-hit model of ALI.
Objective: Trauma is the most common cause of death among young adults. Alcohol intoxication plays a significant role as a cause of accidents and as a potent immunomodulator of the post-traumatic response to tissue injury. Polytraumatized patients are frequently at risk to developing infectious complications, which may be aggravated by alcohol-induced immunosuppression. Systemic levels of integral proteins of the gastrointestinal tract such as syndecan-1 or intestinal fatty acid binding proteins (FABP-I) reflect the intestinal barrier function. The exact impact of acute alcohol intoxication on the barrier function and endotoxin bioactivity have not been clarified yet. Methods: 22 healthy volunteers received a precisely defined amount of alcohol (whiskey–cola) every 20 min over a period of 4 h to reach the calculated blood alcohol concentration (BAC) of 1‰. Blood samples were taken before alcohol drinking as a control, and after 2, 4, 6, 24 and 48 h after beginning with alcohol consumption. In addition, urine samples were collected. Intestinal permeability was determined by serum and urine values of FABP-I, syndecan-1, and soluble (s)CD14 as a marker for the endotoxin translocation via the intestinal barrier by ELISA. BAC was determined. Results: Systemic FABP-I was significantly reduced 2 h after the onset of alcohol drinking, and remained decreased after 4 h. However, at 6 h, FABP-I significantly elevated compared to previous measurements as well as to controls (p < 0.05). Systemic sCD14 was significantly elevated after 6, 24 and 48 h after the onset of alcohol consumption (p < 0.05). Systemic FABP-I at 2 h after drinking significantly correlated with the sCD14 concentration after 24 h indicating an enhanced systemic LPS bioactivity. Women showed significantly lower levels of syndecan-1 in serum and urine and urine for all time points until 6 h and lower FABP-I in the serum after 2 h. Conclusions: Even relative low amounts of alcohol affect the immune system of healthy volunteers, although these changes appear minor in women. A potential damage to the intestinal barrier and presumed enhanced systemic endotoxin bioactivity after acute alcohol consumption is proposed, which represents a continuous immunological challenge for the organism and should be considered for the following days after drinking.
Background: In developed countries worldwide, the number of older patients is increasing. Pulmonary complications are common in multiple injured patients with chest injuries. We assessed whether geriatric patients develop lung failure following multiple trauma with concomitant thoracic trauma more often than younger patients.
Methods: A retrospective analysis of severely injured patients with concomitant blunt thoracic trauma registered in the TraumaRegister DGU® (TR-DGU) between 2009 and 2018 was performed. Patients were categorized into four age groups: 55–64 y, 65–74 y, 75–84 y, and ≥ 85 y. Adult patients aged 18–54 years served as a reference group. Lung failure was defined as PaO2/FIO2 ≤ 200 mm Hg, if mechanical ventilation was performed.
Results: A total of 43,289 patients were included, of whom 9238 (21.3%) developed lung failure during their clinical stay. The rate of posttraumatic lung failure was seen to increase with age. While lung failure markedly increased the length of hospital stay, duration of mechanical ventilation, and length of ICU stay independent of the patient’s age, differences between younger and older patients with lung failure in regard to these parameters were clinically comparable. In addition, the development of respiratory failure showed a distinct increase in mortality with higher age, from 16.9% (18–54 y) to 67.2% (≥ 85 y).
Conclusion: Development of lung failure in severely injured patients with thoracic trauma markedly increases hospital length of stay, length of ICU stay, and duration of mechanical ventilation in patients, regardless of age. The development of respiratory failure appears to be related to the severity of the chest trauma rather than to increasing patient age. However, the greatest effects of lung failure, particularly in terms of mortality, were observed in the oldest patients.
Hintergrund: Viele Patienten mit Bagatellverletzungen gehen heutzutage häufig vorschnell in die Notaufnahmen und binden dort Ressourcen und Personal.
Ziel der Arbeit: Das Erstellen des Kosten-Erlös-Verhältnis der ambulanten Versorgung von Bagatellverletzungen in der unfallchirurgischen Notaufnahme.
Material und Methoden: Die Kalkulation erfolgte anhand der einheitlich abgerechneten Notfallpauschalen des Einheitlichen Bemessungsmaßstabes (EBM). Mittels der gängigen Tarifverträge für Ärzte und Pflegepersonal wurden Minutenkosten berechnet. Der zeitliche Behandlungsaufwand wurde anhand von 100 Referenzpatienten mit einer Bagatellverletzung ermittelt. Die Fallkostenkalkulation mit den jeweilig anfallenden Ressourcen erfolgte mit dem operativen Controlling des Universitätsklinikums Frankfurt.
Ergebnisse: Eingeschlossen wurden 4088 Patienten mit Bagatellverletzungen, welche sich 2019 eigenständig fußläufig vorstellten. Die häufigsten Gründe für die Vorstellung waren Prellungen der unteren (31,9 %; n = 1303) und oberen Extremität (16,6 %; n = 677). Kalkuliert wurden Zeitaufwände von 166,7 min/Tag für das ärztliche und 213,8 min/Tag für das Pflegepersonal. Es wurde ein Gesamterlös von 29.384,31 € und Gesamtlosten von 69.591,22 € berechnet. Somit lässt sich ein Erlösdefizit von 40.206,91 € für das Jahr 2019 berechnen. Das entspricht einem monetären Defizit von 9,84 €/Patienten.
Diskussion: Es herrscht Knappheit an der medizinischen Ressource „Personal“, um das heutzutage hohe Aufkommen an sich selbst vorstellenden fußläufigen Patienten mit Bagatellverletzungen zufriedenstellend und ökonomisch zu bewältigen. Die bisherige Vergütung der Behandlung von Bagatellverletzungen durch den EBM ist für den Krankenhaussektor unzureichend.
Different treatment options for acetabular fractures in the elderly and nonagenarians exist; a consistent guideline has not been established, yet. The purpose of this study is to give an overview of how those fractures can be handled and compares two different surgical treatment methods.
A total of 89 patients ≥ 18 years between 2016 and 2021 with acetabular fractures in our department received a surgical intervention with plate fixation via the Stoppa approach or a total hip arthroplasty with a Burch–Schneider ring and integrated cup. 60 patients ≥ 65 were compared in two groups, 29 patients between 65 and 79 and 31 patients ≥ 80. For comparison, data on operation times, hospitalization, complications during operation and hospital stay, blood loss and postoperative mobilization were collected.
Characteristics could be found for indications for operative osteosynthesis or endoprosthetics based on the X-ray analysis. There was a tendency to treat simple fractures with osteosynthesis. Patients between 65 and 79 with an osteosynthesis had benefits in almost every comparison. Patients ≥ 80 with a plate fixation had advantages in the categories of postoperative complications, blood loss and transfusion of erythrocyte concentrates. Statistical significant differences were noticed in both groups regarding the operation time. Patients between 65 and 79 with osteosynthesis had significant benefits for postoperative complications, hospitalization, number of blood transfusions and postoperative mobilization.
Finding the best supportive treatment option is difficult, and decision-making must respect fracture patterns and individual risk factors. This study shows that plate fixation via the Stoppa approach has some benefits.
Background: Polytraumatized patients undergo a strong immunological stress upon insult. Phagocytes (granulocytes and monocytes) play a substantial role in immunological defense against bacteria, fungi and yeast, and in the clearance of cellular debris after tissue injury. We have reported a reduced monocytes phagocytic activity early after porcine polytrauma before. However, it is unknown if both phagocyte types undergo those functional alterations, and if there is a pathogen-specific phagocytic behavior. We characterized the phagocytic activity and capacity of granulocytes and monocytes after polytrauma.
Methods: Eight pigs (Sus scrofa) underwent polytrauma consisting of lung contusion, liver laceration, tibial fracture and hemorrhagic shock with fluid resuscitation and fracture fixation with external fixator. Intensive care treatment including mechanical ventilation for 72 h followed. Phagocytic activity and capacity were investigated using an in vitro ex vivo whole blood stimulation phagocytosis assays before trauma, after surgery, 24, 48, and 72 h after trauma. Blood samples were stimulated with Phorbol-12-myristate-13-acetate and incubated with FITC-labeled E. coli, S. aureus or S. cerevisiae for phagocytosis assessment by flow cytometry.
Results: Early polytrauma-induced significant increase of granulocytes and monocytes declined to baseline values within 24 h. Percentage of E. coli-phagocytizing granulocytes significantly decreased after polytrauma and during further intensive care treatment, while their capacity significantly increased. Interestingly, both granulocytic phagocytic activity and capacity of S. aureus significantly decreased after trauma, although a recovery was observed after 24 h and yet was followed by another decrease. The percentage of S. cerevisiae-phagocytizing granulocytes significantly increased after 24 h, while their impaired capacity after surgery and 72 h later was detected. Monocytic E. coli-phagocytizing percentage did not change, while their capacity increased after 24–72 h. After a significant decrease in S. aureus-phagocytizing monocytes after surgery, a significant increase after 24 and 48 h was observed without capacity alterations. No significant changes in S. cerevisiae-phagocytizing monocytes occurred, but their capacity dropped 48 and 72 h.
Conclusion: Phagocytic activity and capacity of granulocytes and monocytes follow a different pattern and significantly change within 72 h after polytrauma. Both phagocytic activity and capacity show significantly different alterations depending on the pathogen strain, thus potentially indicating at certain and possibly more relevant infection causes after polytrauma.
Background: Polytrauma and respiratory tract damage after thoracic trauma cause about 25% of mortality among severely injured patients. Thoracic trauma can lead to the development of severe lung complications such as acute respiratory distress syndrome, and is, therefore, of great interest for monitoring in intensive care units (ICU). In recent years, club cell protein (CC)16 with its antioxidant properties has proven to be a potential outcome-related marker. In this study, we evaluated whether CC16 constitutes as a marker of lung damage in a porcine polytrauma model.
Methods: In a 72 h ICU polytrauma pig model (thoracic trauma, tibial fracture, hemorrhagic shock, liver laceration), blood plasma samples (0, 3, 9, 24, 48, 72 h), BAL samples (72 h) and lung tissue (72 h) were collected. The trauma group (PT) was compared to a sham group. CC16 as a possible biomarker for lung injury in this model, and IL-8 concentrations as known indicator for ongoing inflammation during trauma were determined by ELISA. Histological analysis of ZO-1 and determination of total protein content were used to show barrier disruption and edema formation in lung tissue from the trauma group.
Results: Systemic CC16 levels were significantly increased early after polytrauma compared vs. sham. After 72 h, CC16 concentration was significantly increased in lung tissue as well as in BAL in PT vs. sham. Similarly, IL-8 and total protein content in BAL were significantly increased in PT vs. sham. Evaluation of ZO-1 staining showed significantly lower signal intensity for polytrauma.
Conclusion: The data confirm for the first time in a larger animal polytrauma model that lung damage was indicated by systemic and/or local CC16 response. Thus, early plasma and late BAL CC16 levels might be suitable to be used as markers of lung injury in this polytrauma model.