Refine
Year of publication
Document Type
- Article (29)
Has Fulltext
- yes (29)
Is part of the Bibliography
- no (29)
Keywords
- Crystal Structure (4)
- Single Crystal Structure (2)
- 1,2,4-thiadiazoles (1)
- 10-Hydroxyaloins A/B (1)
- 1H and 13C NMR Spectroscopy (1)
- 4,4’-Disubstituted 2,2’-Bipyridines (1)
- AM1 Calculations (1)
- Alcohols (1)
- Aluminium Chloride (1)
- Anthranoids (1)
Institute
The six-membered ring of the title compound, C11H16NO, has a distorted envelope conformation. The piperidine N atom deviates by 0.128 (1) Å from the plane through its three neighbouring atoms. In the crystal structure, molecules are connected by intermolecular Cethynyl-H...O contacts to form chains extending in the [10\overline{1}] direction. Key indicators: single-crystal X-ray study; T = 167 K; mean σ(C–C) = 0.001 Å ; R factor = 0.040; wR factor = 0.112; data-to-parameter ratio = 27.3.
The five-membered ring of the title compound, C10H14NO, is almost planar [mean deviation from best plane = 0.006 (1) Å]. The N-O bond is in the plane of the five-membered ring. The molecule is positioned about a pseudo-mirror plane at y = 0.375. In the crystal, molecules are connected by intermolecular C-H...O contacts into layers parallel to (010). Key indicators: single-crystal X-ray study; T = 167 K; mean σ(C–C) = 0.002 Å; R factor = 0.062; wR factor = 0.157; data-to-parameter ratio = 27.3.
The title compound, C12H20N4O, undergoes a phase transition on cooling. The room-temperature structure is tetragonal (P43212, Z′ = 1), with the methoxybornyl group being extremely disordered. Below 213 K the structure is orthorhombic (P212121, Z′ = 2), with ordered molecules. The two independent molecules (A and B) have very similar conformations; significant differences only occur for the torsion angles about the Cbornyl—Ctetrazole bonds. The independent molecules are approximately related by the pseudo-symmetry relation: xB = −1/4 + yA, yB = 3/4 - xA and zB = 1/4 + zA. In the crystal, molecules are connected by N—H⋯N hydrogen bonds between the tetrazole groups, forming a pseudo-43 helix parallel to the c-axis direction. The crystal studied was a merohedral twin with a refined twin fraction value of 0.231 (2).
In the title molecule, C18H17N5O2, the dihedral angle between the benzene plane and the benzimidazole plane is 19.8 (1)° and the angle between the benzene plane and the triazole plane is 16.7 (1)°. In the crystal, molecules are connected by O—H[cdots, three dots, centered]N hydrogen bonds, forming zigzag chains along the c-axis direction. The chains are connected by bifurcated N—H[cdots, three dots, centered](N,N) hydrogen bonds into layers parallel to (100). These layers are connected along the a-axis direction by weak C—H[cdots, three dots, centered]O contacts, forming a three-dimensional network.
The synthesis of [Ph4As+]2[Cl4Re(NS)(NSCl)2-] · CH2Cl2 (4) from the reaction of S4N4, Cl4ReN, and Ph4AsCl is reported. CH2Cl2 is used as solvent. The reaction of S4N4 with Re2Cl10 similarly leads to the salt [Ph4As+][Cl2ReNS-] (5) in a smaller yield. 4 crystallizes in the triclinic space group P1̅ with Z = 2, a - 10.434(2), b = 12.1454(6), c = 21.125(2) Å, a = 81.210(6), β = 86.70(1), γ = 76.624(8)°.
The crystal packing of the title compound, C13H19NO·0.33C7H8, shows a channel at [001], which contains grossly disordered toluene solvent molecules. The angle between the benzene ring and the mean plane of the formamide group is 71.1 (1)°. The amide groups of neighbouring molecules are connected by N—H(...)O hydrogen bonds, forming 21 helical chains propagating along [001]. Molecules are also connected by weak intermolecular C—H(...)O hydrogen bonds, forming 61 helices.
The absolute configurations of the diastereomeric 10-hydroxyaloins, which may be regarded as parent structures for other naturally occurring oxanthrone-C-glucosyls, have been established as 10R, 16 R (A) and 10 S, 16 R (B) by an X-ray structure analysis of the A-octaacetyl derivative (C 16 is the anomeric glucosyl carbon atom). The determination was confirmed by CD spectroscopic comparison with the structural analogues aloins A and B, which should prove useful for making future configurational assignments within this class of compounds. A conformational analysis by the use of a molecular modeling method based on force-field calculations reveals the presence of an extra- and an intra-form, the extra-form of which is energetically preferred.
The IrIII atom of the title compound, [Ir(C11H8N)2Cl(CH3CN)], displays a distorted octahedral coordination. The pyridyl groups are in trans positions [N—Ir—N = 173.07 (10)°], while the phenyl groups are trans with respect to the acetonitrile and chloride groups [C—Ir—N = 178.13 (11) and C—Ir—Cl = 176.22 (9)°]. The pyridylphenyl groups only show a small deviation from planarity, with the dihedral angle between the planes of the two six-membered rings in each pyridylphenyl group being 5.6 (2) and 5.8 (1)°. The crystal packing shows intermolecular C—H[cdots, three dots, centered]Cl, C—H[cdots, three dots, centered]π(acetonitrile) and C—H[cdots, three dots, centered]π(pyridylphenyl) contacts.
The absolute configuration of the title molecule, [Fe(C5H5)(C38H34NP2)]·CHCl3, is R,Rp. The molecular structure is similar to the structure of the solvent-free compound [Fukuzawa, Yamamoto & Kikuchi (2007). J. Org. Chem. 72, 1514-1517], but some torsion angles about the P-Cphenyl bonds differ by up to 25°. The P atoms and the N atom have a distorted trigonal-pyramidal geometry. The chloroform solvate group donates a C-H...[pi] bond to the central benzene ring and is also involved in six intermolecular C-H...Cl contacts with H...Cl distances between 2.96 and 3.13 Å. Key indicators: single-crystal X-ray study; T = 163 K; mean σ(C–C) = 0.003 Å; R factor = 0.039; wR factor = 0.088; data-to-parameter ratio = 24.2.
The absolute configuration of the title compound, [Fe(C5H5)(C36H29OP2)], is Sp at the ferrocene group and S at the asymmetric C atom. Both P atoms have a trigonal-pyramidal conformation. There is a short intramolecular C-H...P contact with an H...P distance of 2.56 Å. The hydroxy group is involved in an intramolecular O-H...[pi]phenyl interaction. The crystal packing shows five very weak intermolecular C-H...[pi] contacts, with H...Cg distances between 3.26 and 3.39 Å (Cg is the centroid of a phenyl or cyclopentadienyl ring). Key indicators: single-crystal X-ray study; T = 162 K; mean σ(C–C) = 0.004 Å; R factor = 0.038; wR factor = 0.083; data-to-parameter ratio = 22.3.