Refine
Document Type
- Working Paper (3)
- Article (1)
Language
- English (4)
Has Fulltext
- yes (4)
Is part of the Bibliography
- no (4)
Keywords
Mamma mia! Revealing hidden heterogeneity by PCA-biplot : MPC puzzle for Italy's elderly poor
(2023)
I investigate consumption patterns in Italy and use a PCA-biplot to discover a consumption puzzle for the elderly poor. Data from the third wave (2017) of the Eurosystem’s Household Finance and Consumption Survey (HFCS) indicate that Italian poor old-aged households boast lower levels of the marginal propensity to consume (MPC) than suggested by the dominant consumption models. A customized regression analysis exhibits group differences with richer peers to be only half as large as prescribed by a traditional linear regression model. This analysis has benefited from a visualization technique for high-dimensional matrices related to the unsupervised machine learning literature. I demonstrate that PCA-biplots are a useful tool to reveal hidden relations and to help researchers to formulate simple research questions. The method is presented in detail and suggestions on incorporating it in the econometric modeling pipeline are given.
We investigate consumption patterns in Europe with supervised machine learning methods and reveal differences in age and wealth impact across countries. Using data from the third wave (2017) of the Eurosystem’s Household Finance and Consumption Survey (HFCS), we assess how age and (liquid) wealth affect the marginal propensity to consume (MPC) in the Netherlands, Germany, France, and Italy. Our regression analysis takes the specification by Christelis et al. (2019) as a starting point. Decision trees are used to suggest alternative variable splits to create categorical variables for customized regression specifications. The results suggest an impact of differing wealth distributions and retirement systems across the studied Eurozone members and are relevant to European policy makers due to joint Eurozone monetary policy and increasing supranational fiscal authority of the EU. The analysis is further substantiated by a supervised machine learning analysis using a random forest and XGBoost algorithm.
We investigate the link between Big Five personality traits and the marginal propensity to consume (MPC) for users of a German financial account aggregator app. We use 1,700 survey responses and transaction data of 56,000 app users to assess whether Big Five personality traits help explain MPC heterogeneity. We find that extraversion corresponds to an increase in consumption whereas agreeableness and neuroticism correspond to a decrease in consumption. We test this with trust and risk preferences and find that risk indicates more explanatory power in consumption response than the Big Five. Our findings help policy makers target individuals more efficiently.
What does your personality reveal about your financial behavior? Evidence from a FinTech experiment
(2022)
We co-operate with a German financial account aggregator (FAA) and conduct a personality survey with 1,700 app users. We combine the survey results with their anonymized transaction data and investigate links between personality traits and spending behavior. Observing many lottery windfalls in our dataset and treating these incidents as real-life experiments, we ask: what do individuals do with unexpected income changes? Our findings suggest that highly extraverted individuals tend to overspend in response to lottery windfalls.