Refine
Document Type
- Article (5)
- Doctoral Thesis (1)
Language
- English (6)
Has Fulltext
- yes (6)
Is part of the Bibliography
- no (6)
Keywords
- Parkinson’s disease (2)
- Antiviral response (1)
- Ataxia (1)
- CPT1A (1)
- Cyp46a1 (1)
- Hmox1 (1)
- Ireb2 (1)
- Leukodystrophy (1)
- MMP14 (1)
- MTRNR1 (1)
Institute
- Medizin (5)
- Biowissenschaften (2)
Iron deprivation activates mitophagy and extends lifespan in nematodes. In patients suffering from Parkinson’s disease (PD), PINK1-PRKN mutations via deficient mitophagy trigger iron accumulation and reduce lifespan. To evaluate molecular effects of iron chelator drugs as a potential PD therapy, we assessed fibroblasts by global proteome profiles and targeted transcript analyses. In mouse cells, iron shortage decreased protein abundance for iron-binding nucleotide metabolism enzymes (prominently XDH and ferritin homolog RRM2). It also decreased the expression of factors with a role for nucleotide surveillance, which associate with iron-sulfur-clusters (ISC), and are important for growth and survival. This widespread effect included prominently Nthl1-Ppat-Bdh2, but also mitochondrial Glrx5-Nfu1-Bola1, cytosolic Aco1-Abce1-Tyw5, and nuclear Dna2-Elp3-Pold1-Prim2. Incidentally, upregulated Pink1-Prkn levels explained mitophagy induction, the downregulated expression of Slc25a28 suggested it to function in iron export. The impact of PINK1 mutations in mouse and patient cells was pronounced only after iron overload, causing hyperreactive expression of ribosomal surveillance factor Abce1 and of ferritin, despite ferritin translation being repressed by IRP1. This misregulation might be explained by the deficiency of the ISC-biogenesis factor GLRX5. Our systematic survey suggests mitochondrial ISC-biogenesis and post-transcriptional iron regulation to be important in the decision, whether organisms undergo PD pathogenesis or healthy aging.
Depletion of yeast/fly Ataxin-2 rescues TDP-43 overexpression toxicity. In mouse models of Amyotrophic Lateral Sclerosis via TDP-43 overexpression, depletion of its ortholog ATXN2 mitigated motor neuron degeneration and extended lifespan from 25 days to >300 days. There is another ortholog in mammals, named ATXN2L (Ataxin-2-like), which is almost uncharacterized but also functions in RNA surveillance at stress granules. We generated mice with Crispr/Cas9-mediated deletion of Atxn2l exons 5-8, studying homozygotes prenatally and heterozygotes during aging. Our novel findings indicate that ATXN2L absence triggers mid-gestational embryonic lethality, affecting female animals more strongly. Weight and development stages of homozygous mutants were reduced. Placenta phenotypes were not apparent, but brain histology showed lamination defects and apoptosis. Aged heterozygotes showed no locomotor deficits or weight loss over 12 months. Null mutants in vivo displayed compensatory efforts to maximize Atxn2l expression, which were prevented upon nutrient abundance in vitro. Mouse embryonal fibroblast cells revealed more multinucleated giant cells upon ATXN2L deficiency. In addition, in human neural cells, transcript levels of ATXN2L were induced upon starvation and glucose and amino acids exposure, but this induction was partially prevented by serum or low cholesterol administration. Neither ATXN2L depletion triggered dysregulation of ATXN2, nor a converse effect was observed. Overall, this essential role of ATXN2L for embryogenesis raises questions about its role in neurodegenerative diseases and neuroprotective therapies.
Hereditary Parkinson’s disease (PD) can be triggered by an autosomal dominant overdose of alpha-Synuclein (SNCA) as stressor or the autosomal recessive deficiency of PINK1 Serine/Threonine-phosphorylation activity as stress-response. We demonstrated the combination of PINK1-knockout with overexpression of SNCAA53T in double mutant (DM) mice to exacerbate locomotor deficits and to reduce lifespan. To survey posttranslational modifications of proteins underlying the pathology, brain hemispheres of old DM mice underwent quantitative label-free global proteomic mass spectrometry, focused on Ser/Thr-phosphorylations. As an exceptionally strong effect, we detected >300-fold reductions of phosphoThr1928 in MAP1B, a microtubule-associated protein, and a similar reduction of phosphoSer3781 in ANK2, an interactor of microtubules. MAP1B depletion is known to trigger perturbations of microtubular mitochondria trafficking, neurite extension, and synaptic function, so it was noteworthy that relevantly decreased phosphorylation was also detected for other microtubule and microfilament factors, namely MAP2S1801, MARK1S394, MAP1AT1794, KIF1AS1537, 4.1NS541, 4.1GS86, and ADD2S528. While the MAP1B heavy chain supports regeneration and growth cones, its light chain assists DAPK1-mediated autophagy. Interestingly, relevant phosphorylation decreases of DAPK2S299, VPS13DS2429, and VPS13CS2480 in the DM brain affected regulators of autophagy, which are implicated in PD. Overall, significant downregulations were enriched for PFAM C2 domains, other kinases, and synaptic transmission factors upon automated bioinformatics, while upregulations were not enriched for selective motifs or pathways. Validation experiments confirmed the change of LC3 processing as reflection of excessive autophagy in DM brain, and dependence of ANK2/MAP1B expression on PINK1 levels. Our new data provide independent confirmation in a mouse model with combined PARK1/PARK4/PARK6 pathology that MAP1B/ANK2 phosphorylation events are implicated in Parkinsonian neurodegeneration. These findings expand on previous observations in Drosophila melanogaster that the MAP1B ortholog futsch in the presynapse is a primary target of the PARK8 protein LRRK2, and on a report that MAP1B is a component of the pathological Lewy body aggregates in PD patient brains. Similarly, ANK2 gene locus variants are associated with the risk of PD, ANK2 interacts with PINK1/Parkin-target proteins such as MIRO1 or ATP1A2, and ANK2-derived peptides are potent inhibitors of autophagy.
Background: PINK1 deficiency causes the autosomal recessive PARK6 variant of Parkinson’s disease. PINK1 activates ubiquitin by phosphorylation and cooperates with the downstream ubiquitin ligase PARKIN, to exert quality control and control autophagic degradation of mitochondria and of misfolded proteins in all cell types.
Methods: Global transcriptome profiling of mouse brain and neuron cultures were assessed in protein-protein interaction diagrams and by pathway enrichment algorithms. Validation by quantitative reverse transcriptase polymerase chain reaction and immunoblots was performed, including human neuroblastoma cells and patient primary skin fibroblasts.
Results: In a first approach, we documented Pink1-deleted mice across the lifespan regarding brain mRNAs. The expression changes were always subtle, consistently affecting “intracellular membrane-bounded organelles”. Significant anomalies involved about 250 factors at age 6 weeks, 1300 at 6 months, and more than 3500 at age 18 months in the cerebellar tissue, including Srsf10, Ube3a, Mapk8, Creb3, and Nfkbia. Initially, mildly significant pathway enrichment for the spliceosome was apparent. Later, highly significant networks of ubiquitin-mediated proteolysis and endoplasmic reticulum protein processing occurred. Finally, an enrichment of neuroinflammation factors appeared, together with profiles of bacterial invasion and MAPK signaling changes—while mitophagy had minor significance. Immunohistochemistry showed pronounced cellular response of Iba1-positive microglia and GFAP-positive astrocytes; brain lipidomics observed increases of ceramides as neuroinflammatory signs at old age.
In a second approach, we assessed PINK1 deficiency in the presence of a stressor. Marked dysregulations of microbial defense factors Ifit3 and Rsad2 were consistently observed upon five analyses: (1) Pink1 −/− primary neurons in the first weeks after brain dissociation, (2) aged Pink1 −/− midbrain with transgenic A53T-alpha-synuclein overexpression, (3) human neuroblastoma cells with PINK1-knockdown and murine Pink1 −/− embryonal fibroblasts undergoing acute starvation, (4) triggering mitophagy in these cells with trifluoromethoxy carbonylcyanide phenylhydrazone (FCCP), and (5) subjecting them to pathogenic RNA-analogue poly(I:C). The stress regulation of MAVS, RSAD2, DDX58, IFIT3, IFIT1, and LRRK2 was PINK1 dependent. Dysregulation of some innate immunity genes was also found in skin fibroblast cells from PARK6 patients.
Conclusions: Thus, an individual biomarker with expression correlating to progression was not identified. Instead, more advanced disease stages involved additional pathways. Hence, our results identify PINK1 deficiency as an early modulator of innate immunity in neurons, which precedes late stages of neuroinflammation during alpha-synuclein spreading.
Morbus Parkinson (abgekürzt als PD vom Englischen Parkinson’s disease) ist nach Alzheimer die zweithäufigste neurodegenerative Erkrankung. Die Hauptmerkmale sind Rigidität und Bradykinesie, sowie Tremor und posturale Instabilität. Im Gehirn lässt sich bei Parkinsonpatienten post mortem ein Verlust an Neuronen in der Substantia nigra feststellen, was zu den ersten beiden Anzeichen führt. Zudem gibt es intrazelluläre Einschlüsse in den betroffenen Nervenzellen – Lewy-Körperchen genannt – die aus Alpha-Synuklein und anderen Proteinen wie Ubiquitin zusammengesetzt sind. Außerdem ist der Eisenmetabolismus in Gehirnen von Parkinsonpatienten gestört und man findet Eisen-Ablagerungen, vor allem im Mittelhirn. Die Ursachen für PD sind bislang nicht abschließend geklärt. Der Großteil der Fälle ist sporadischer Natur mit unbekannter Ursache und nur bei einem geringen Anteil liegt eine Mutation in einem einzelnen Gen zugrunde. Die häufigsten Mutationen tritt in den Genen für Alpha-Synuklein (SNCA), PINK1 und PARKIN auf.
Die Serin-Threonin-Kinase PINK1 und die E3-Ubiquitin-Protein-Ligase PARKIN sind zwei Proteine, die in Stresssituationen an der Mitochondrien-Außenmembran am Abbau von alten oder nicht richtig funktionierenden Mitochondrien beteiligt sind. Dieser Vorgang nennt sich Mitophagie.
Die dieser Arbeit zugrunde liegenden Publikationen gehen den Zusammenhängen zwischen mitochondrialen Fehlfunktionen und der Pathogenese von PD nach. Da die Krankheit meist erst im hohen Alter auftritt, davon größtenteils ohne direkte Ursache, liegt der Schluss nahe, dass neben genetischen Ursachen auch Umweltfaktoren eine größere Rolle spielen könnten. Um dies näher zu analysieren, wurden experimentell verschiedene Stressoren eingesetzt.
Insgesamt wurden folgende Aspekte untersucht:
I. Welche Auswirkungen hat das Fehlen von PINK1 auf die Zelle? Gibt es einen Biomarker, der mit höherem Alter immer stärker verändert ist?
II. Welchen Einfluss haben Umweltfaktoren wie veränderte Eisen-Exposition auf die Zelle und was verändert sich beim Fehlen von PINK1?
III. Wie können mitochondriale Fehlfunktionen präferentiell das Nervensystem betreffen, wenn es nicht um respiratorische Insuffizienz geht?
Die einzelnen Studien zeigten folgende Ergebnisse:
Torres-Odio/Key et al. 2017 widmete sich der Suche nach molekularen Biomarkern, wodurch PD präsymptomatisch erkannt und die Progression der Erkrankung eingeschätzt werden kann. Die Transkriptom-Analyse der Kleinhirne von Mäusen mit Pink1-/--Mutation in drei verschiedenen Altersstufen zeigte eindrücklich, dass nicht ein einzelner Faktor immer stärker verändert war, sondern, dass immer mehr Faktoren und daher auch eine steigende Zahl an
Signalwegen mit höherem Alter beteiligt waren. Diese Veränderungen betrafen inflammatorische Signalwege, insbesondere Faktoren, die mit der Erkennung und Verarbeitung von zellfremden Nukleinsäuren assoziiert sind. Aufgrund der evolutionären Herkunft von Mitochondrien als frühere Protobakterien haben mitochondriale Nukleinsäuren und Proteine zum Teil bakterielle Ähnlichkeiten, und könnten bei Fehlfunktionen ins Zytosol gelangen. Vor diesem Hintergrund lassen die Ergebnisse der Studie den Schluss zu, dass das angeborene Immunsystem in Neuronen durch eine PINK1-assoziierte mitochondriale Störung aktiviert wird.
In der Publikation Key et al. 2020 wurde Eisen als ein im täglichen Leben vorkommender Stressor eingesetzt und es wurden systematisch Faktoren des Eisenstoffwechsels bei hohen und niedrigen Eisenspiegeln im Zusammenhang mit Parkinson-Mutationen untersucht. Da Eisen für die Gesundheit von Mitochondrien eine große Rolle spielt und Eisen-Chelatoren als Therapie bei PD Patienten bereits diskutiert werden, haben die molekularen Befunde große Relevanz. Die Ergebnisse zeigen, dass unter niedrigen Eisenspiegeln Proteine reduziert waren, die am Nukleotid-Stoffwechsel beteiligt sind, sowie Faktoren, die Eisen-Schwefel-Cluster als Cofaktoren haben und wichtig für die Nukleotid-Qualitätskontrolle sind. Das Fehlen von Eisen führte zu einer Induktion von Pink1 und Prkn, was auf verstärkte Mitophagie hindeutet. Insgesamt konnte gezeigt werden, dass die mitochondriale Eisen-Schwefel-Cluster Biogenese und die post-transkriptionelle Eisenregulation entscheidend für die Pathogenese von PD, bzw. das gesunde Fortbestehen einer Zelle und letztlich auch eines Organismus sind.
In Key et al. 2019 wurde erstmalig das Gesamt-Ubiquitylom aus Gehirnen von gealterten Parkin-knockout (KO) Mäusen erhoben und analysiert, um Ubiquitylierungs-Substrate von PARKIN zu identifizieren. Hierbei zeigte sich eine veränderte Ubiquitylierung von mehreren Faktoren, die an der zellulären Calcium-Homöostase beteiligt sind. Weitere elektrophysiologische Experimente in Gehirnen von gealterten Parkin-/--KO Mäusen ergaben, dass in Nervenzellen im Locus coeruleus die Geschwindigkeit der spontanen Taktgeber erhöht, dass die langsame Nachhyperpolarisation reduziert und, dass die Dauer der Aktionspotentiale erniedrigt war, ohne Veränderung der Kaliumkanal-Ströme.
Insgesamt geht aus den drei Studien hervor, dass mitochondriale Fehlfunktionen bei dauerhaftem Bestehen weitreichende Folgen für die Gesundheit des Nervensystems haben können, denn auch kleine Veränderungen, seien es durch Mutationen oder Umweltfaktoren wie Eisen, können in einer so großen Lebensspanne wie der des Menschen über Krankheit oder Gesundheit entscheiden!
Mitochondrial dysfunction may activate innate immunity, e.g. upon abnormal handling of mitochondrial DNA in TFAM mutants or in altered mitophagy. Recent reports showed that also deletion of mitochondrial matrix peptidase ClpP in mice triggers transcriptional upregulation of inflammatory factors. Here, we studied ClpP-null mouse brain at two ages and mouse embryonal fibroblasts, to identify which signaling pathways are responsible, employing mass spectrometry, subcellular fractionation, immunoblots, and reverse transcriptase polymerase chain reaction. Several mitochondrial unfolded protein response factors showed accumulation and altered migration in blue-native gels, prominently the co-chaperone DNAJA3. Its mitochondrial dysregulation increased also its extra-mitochondrial abundance in the nucleus, a relevant observation given that DNAJA3 modulates innate immunity. Similar observations were made for STAT1, a putative DNAJA3 interactor. Elevated expression was observed not only for the transcription factors Stat1/2, but also for two interferon-stimulated genes (Ifi44, Gbp3). Inflammatory responses were strongest for the RLR pattern recognition receptors (Ddx58, Ifih1, Oasl2, Trim25) and several cytosolic nucleic acid sensors (Ifit1, Ifit3, Oas1b, Ifi204, Mnda). The consistent dysregulation of these factors from an early age might influence also human Perrault syndrome, where ClpP loss-of-function leads to early infertility and deafness, with subsequent widespread neurodegeneration.