Refine
Document Type
- Article (2)
- Doctoral Thesis (1)
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Keywords
- DNA Transformation (2)
- Membrane Proteins (2)
- Electron Microscopy (1)
- Membrane Protein Complex (1)
- Membrane Transport (1)
- Protein Assembly (1)
- Protein Complexes (1)
- Protein DNA-Interaction (1)
- Protein Purification (1)
- Protein Structure (1)
Institute
- Biowissenschaften (3)
- MPI für Biophysik (2)
Prokaryotische Organismen werden in ihrer natürlichen Umgebung mit schwankenden Umwelteinflüssen konfrontiert oder müssen gegebenenfalls extremen Bedingungen standhalten. Um sich an derartige Veränderungen anpassen zu können und damit ein weiteres Überleben zu sichern, ist es wichtig neue genetische Informationen zu akquirieren. Die molekulare Basis dieser Anpassung sind Genmutationen, Genverlust, intramolekulare Rekombination und/oder horizontaler Gentransfer. Der vorliegende Selektionsdruck der Umwelt begünstigt schlussendlich die Spezialisierung und damit die Erschließung neuer Standorte aufgrund des Erwerbs neuer metabolischer Eigenschaften, Resistenzgene oder Pathogenitätsfaktoren. Vergleichende Analysen bakterieller Genome, welche auf Analysen der GC-Gehalte, der Codon- und Aminosäurenutzung und der Genlokalisation beruhen, zeigten, dass bei diesem evolutiven Prozess bzw. der Weiterentwicklung der bakteriellen Genome der horizontale Gentransfer als treibende Kraft eine entscheidende Rolle spielt. So indizieren Genomstudien, dass 0-22% der gesamten bakteriellen und 5-15% der archaeellen Gene horizontal erworben wurden, wobei der DNA-Transfer nicht ausschließlich zwischen Vertretern einer Domäne, sondern ebenfalls zwischen Organismen unterschiedlicher Domänen stattgefunden hat. So sind z.B. 24 bzw. 16% der Gene von Genomen hyperthermophiler Organismen wie Thermotoga maritima oder Aquifex aeolicus archaeellen Ursprungs. Ebenso finden sich Gene für Chaperone und DNA-Reparaturenzyme im Genom des thermophilen Bakteriums Thermus thermophilus wieder, welche wahrscheinlich ebenfalls durch horizontalen Gentransfer aus hyperthermophilen und archaeellen Genomen erworben wurden um eine Anpassung an extreme Standorte zu ermöglichen. Durch vergleichende Genomstudien wurde ebenfalls festgestellt, dass die durch horizontalen Gentransfer erworbenen Gene oftmals zu einer Neuorganisation von Transkriptionseinheiten und zu einer veränderten Genomorganisation führten. Dennoch finden sich immer wieder Beispiele von horizontal erworbenen Operonen in den verschiedenen Organismen. Gut charakterisierte Vertreter horizontal übertragener Operone sind dabei z.B. das archaeelle H+-ATPase-Operon, das Operon der Na+-translozierenden NADH:Ubichitonoxidoreduktase oder das Nitratreduktase-Operon.
Man unterscheidet bei dem horizontalen Gentransfer zwischen drei Mechanismen der DNAAufnahme: Konjugation, Transduktion und Transformation. Die DNA-Übertragung durch Konjugation ist durch einen spezifischen Zell-Zell-Kontakt definiert, der durch einen von der Donorzelle ausgehenden, sogenannten F-Pilus hergestellt wird. Die Donorzelle überträgt schließlich Plasmid-kodierte genetische Informationen und oftmals Eigenschaften für die eigenständige Konjugation auf eine Rezipientenzelle. Die Transduktion hingegen beschreibt die DNA-Übertragung von Bakteriophagen auf eine Wirtszelle, wobei hier eine hohe Wirtsspezifität Voraussetzung ist. Die Übertragung der DNA von einer Bakterienzelle in eine andere erfolgt dabei ohne Kontakt der Zellen. Die natürliche Transformation ist definiert als Transfer von freier DNA und ermöglicht damit im Gegensatz zu den beiden ersten spezifischen Mechanismen der DNA-Übertragung ein größeres Spektrum der Verbreitung genetischer Informationen. Freie DNA, welche entweder durch Zelllyse oder Typ-IVSekretion ausgeschieden wird und aufgrund von Adsorption an mineralische Oberflächen über längere Zeiträume stabil in der Umgebung vorliegen kann, kann unter der Voraussetzung der Existenz eines speziellen Aufnahmesystems von Bakterien aufgenommen werden. Mittlerweile sind über 44 Bakterien aus unterschiedlichen taxonomischen Gruppen beschrieben, die eine natürliche Kompetenz ausbilden können. Die bekanntesten Beispiele für natürlich transformierbare Gram-negative Bakterien sind Heliobacter pylori, Neisseria gonorrhoeae, Pseudomonas stutzeri, Haemophilus influenzae, T. thermophilus und Acinetobacter baylyi. Auch unter den Gram-positiven Bakterien finden sich einige Vertreter, die natürlich kompetent sind, wie Deinococcus radiodurans, Bacillus subtilis und Streptococcus pneumoniae. Ungeachtet der relevanten Rolle der Transformation im horizontalen Gentransfer, ist über die Struktur und Funktion der komplexen DNA-Aufnahmesysteme wenig bekannt.
DNA translocators of natural transformation systems are complex systems critical for the uptake of free DNA and provide a powerful mechanism for adaptation to changing environmental conditions. In natural transformation machineries, outer membrane secretins are suggested to form a multimeric pore for the uptake of external DNA. Recently, we reported on a novel structure of the DNA translocator secretin complex, PilQ, in Thermus thermophilus HB27 comprising a stable cone and cup structure and six ring structures with a large central channel. Here, we report on structural and functional analyses of a set of N-terminal PilQ deletion derivatives in T. thermophilus HB27. We identified 136 N-terminal residues exhibiting an unusual ααβαββα fold as a ring-building domain. Deletion of this domain had a dramatic effect on twitching motility, adhesion, and piliation but did not abolish natural transformation. These findings provide clear evidence that the pilus structures of T. thermophilus are not essential for natural transformation. The truncated complex was not affected in inner and outer membrane association, indicating that the 136 N-terminal residues are not essential for membrane targeting. Analyses of complex formation of the truncated PilQ monomers revealed that the region downstream of residue 136 is required for multimerization, and the region downstream of residue 207 is essential for monomer stability. Possible implications of our findings for the mechanism of DNA uptake are discussed.
Secretins are a family of large bacterial outer membrane protein complexes mediating the transport of complex structures, such as type IV pili, DNA and filamentous phage, or various proteins, such as extracellular enzymes and pathogenicity determinants. PilQ of the thermophilic bacterium Thermus thermophilus HB27 is a member of the secretin family required for natural transformation. Here we report the isolation, structural, and functional analyses of a unique PilQ from T. thermophilus. Native PAGE, gel filtration chromatography, and electrophoretic mobility shift analyses indicated that PilQ forms a macromolecular homopolymeric complex that binds dsDNA. Electron microscopy showed that the PilQ complex is 15 nm wide and 34 nm long and consists of an extraordinary stable "cone" and "cup" structure and five ring structures with a large central channel. Moreover, the electron microscopic images together with secondary structure analyses combined with structural data of type II protein secretion system and type III protein secretion system secretins suggest that the individual rings are formed by conserved domains of alternating α-helices and β-sheets. The unprecedented length of the PilQ complex correlated well with the distance between the inner and outer membrane of T. thermophilus. Indeed, PilQ was found immunologically in both membranes, indicating that the PilQ complex spans the entire cell periphery of T. thermophilus. This is consistent with the hypothesis that PilQ accommodates a PilA4 comprising pseudopilus mediating DNA transport across the outer membrane and periplasmic space in a single-step process.